Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import PyPDF2
|
| 3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 4 |
+
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
| 5 |
+
from langchain.vectorstores import Chroma
|
| 6 |
+
from langchain.memory import ChatMessageHistory, ConversationBufferMemory
|
| 7 |
+
from langchain_groq import ChatGroq
|
| 8 |
+
from langchain.chains import ConversationalRetrievalChain
|
| 9 |
+
from langchain_community.document_loaders import WebBaseLoader
|
| 10 |
+
import os
|
| 11 |
+
|
| 12 |
+
# Function to process text and create ConversationalRetrievalChain
|
| 13 |
+
def process_text_and_create_chain(text):
|
| 14 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
| 15 |
+
texts = text_splitter.split_text(text)
|
| 16 |
+
metadatas = [{"source": f"{i}-pl"} for i in range(len(texts))]
|
| 17 |
+
|
| 18 |
+
model_name = "BAAI/bge-small-en"
|
| 19 |
+
model_kwargs = {"device": "cpu"}
|
| 20 |
+
encode_kwargs = {"normalize_embeddings": True}
|
| 21 |
+
hf = HuggingFaceBgeEmbeddings(
|
| 22 |
+
model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
db = Chroma.from_texts(texts, hf, metadatas=metadatas)
|
| 26 |
+
|
| 27 |
+
message_history = ChatMessageHistory()
|
| 28 |
+
memory = ConversationBufferMemory(
|
| 29 |
+
memory_key="chat_history",
|
| 30 |
+
output_key="answer",
|
| 31 |
+
chat_memory=message_history,
|
| 32 |
+
return_messages=True,
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
llm_groq = ChatGroq(
|
| 36 |
+
groq_api_key="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",
|
| 37 |
+
model_name='mixtral-8x7b-32768'
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
chain = ConversationalRetrievalChain.from_llm(
|
| 41 |
+
llm=llm_groq,
|
| 42 |
+
chain_type="stuff",
|
| 43 |
+
retriever=db.as_retriever(),
|
| 44 |
+
memory=memory,
|
| 45 |
+
return_source_documents=True,
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
return chain
|
| 49 |
+
|
| 50 |
+
# Initialize global variables
|
| 51 |
+
global_chain = None
|
| 52 |
+
|
| 53 |
+
# Function to handle PDF upload
|
| 54 |
+
def handle_pdf_upload(file):
|
| 55 |
+
if file is None:
|
| 56 |
+
return "No file uploaded. Please upload a PDF file.", gr.update(visible=False), gr.update(visible=True)
|
| 57 |
+
|
| 58 |
+
if not file.name.lower().endswith('.pdf'):
|
| 59 |
+
return "Error: Please upload a PDF file.", gr.update(visible=False), gr.update(visible=True)
|
| 60 |
+
|
| 61 |
+
try:
|
| 62 |
+
print(f"Processing file: {file.name}")
|
| 63 |
+
pdf_reader = PyPDF2.PdfReader(file.name)
|
| 64 |
+
pdf_text = ""
|
| 65 |
+
for page in pdf_reader.pages:
|
| 66 |
+
pdf_text += page.extract_text()
|
| 67 |
+
|
| 68 |
+
global global_chain
|
| 69 |
+
global_chain = process_text_and_create_chain(pdf_text)
|
| 70 |
+
return "PDF processed successfully.", gr.update(visible=True), gr.update(visible=False)
|
| 71 |
+
except Exception as e:
|
| 72 |
+
print(f"Error processing PDF: {str(e)}")
|
| 73 |
+
return f"Error processing PDF: {str(e)}", gr.update(visible=False), gr.update(visible=True)
|
| 74 |
+
|
| 75 |
+
# Function to handle link input
|
| 76 |
+
def handle_link_input(link):
|
| 77 |
+
try:
|
| 78 |
+
loader = WebBaseLoader(link)
|
| 79 |
+
data = loader.load()
|
| 80 |
+
doc = "\n".join([doc.page_content for doc in data])
|
| 81 |
+
|
| 82 |
+
global global_chain
|
| 83 |
+
global_chain = process_text_and_create_chain(doc)
|
| 84 |
+
return "Link processed successfully.", gr.update(visible=True), gr.update(visible=False)
|
| 85 |
+
except Exception as e:
|
| 86 |
+
print(f"Error processing link: {str(e)}")
|
| 87 |
+
return f"Error processing link: {str(e)}", gr.update(visible=False), gr.update(visible=True)
|
| 88 |
+
|
| 89 |
+
# Function to handle user query
|
| 90 |
+
def handle_query(query, chatbot):
|
| 91 |
+
if global_chain is None:
|
| 92 |
+
return chatbot + [("Bot", "Please provide input first.")]
|
| 93 |
+
try:
|
| 94 |
+
result = global_chain({"question": query})
|
| 95 |
+
return chatbot + [("You", query), ("System", result['answer'])]
|
| 96 |
+
except Exception as e:
|
| 97 |
+
print(f"Error processing query: {str(e)}")
|
| 98 |
+
return chatbot + [("Bot", f"Error: {str(e)}")]
|
| 99 |
+
|
| 100 |
+
# Function to toggle input method
|
| 101 |
+
def toggle_input_method(input_method):
|
| 102 |
+
if input_method == "Upload PDF":
|
| 103 |
+
return gr.update(visible=True), gr.update(visible=False)
|
| 104 |
+
elif input_method == "Paste Link":
|
| 105 |
+
return gr.update(visible=False), gr.update(visible=True)
|
| 106 |
+
else:
|
| 107 |
+
return gr.update(visible=False), gr.update(visible=False)
|
| 108 |
+
|
| 109 |
+
# Gradio interface
|
| 110 |
+
with gr.Blocks() as demo:
|
| 111 |
+
gr.Markdown("# Chat-With-Context")
|
| 112 |
+
|
| 113 |
+
with gr.Row():
|
| 114 |
+
input_method = gr.Radio(["Upload PDF", "Paste Link"], label="Choose Input Method", interactive=True)
|
| 115 |
+
|
| 116 |
+
with gr.Row(visible=False) as upload_section:
|
| 117 |
+
pdf_input = gr.File(label="Upload PDF")
|
| 118 |
+
upload_button = gr.Button("Process PDF")
|
| 119 |
+
|
| 120 |
+
with gr.Row(visible=False) as text_input_section:
|
| 121 |
+
text_input = gr.Textbox(label="Paste Link")
|
| 122 |
+
submit_text_button = gr.Button("Process Link")
|
| 123 |
+
|
| 124 |
+
input_status = gr.Textbox(label="Status", interactive=False)
|
| 125 |
+
|
| 126 |
+
with gr.Row(visible=False) as chat_section:
|
| 127 |
+
chatbot = gr.Chatbot(label="Chat")
|
| 128 |
+
query_input = gr.Textbox(label="Write Your Question", placeholder="Message Chat-With-Context")
|
| 129 |
+
send_button = gr.Button("Send")
|
| 130 |
+
|
| 131 |
+
input_method.change(toggle_input_method, inputs=input_method, outputs=[upload_section, text_input_section])
|
| 132 |
+
upload_button.click(fn=handle_pdf_upload, inputs=pdf_input, outputs=[input_status, chat_section, upload_section])
|
| 133 |
+
submit_text_button.click(fn=handle_link_input, inputs=text_input, outputs=[input_status, chat_section, text_input_section])
|
| 134 |
+
send_button.click(fn=handle_query, inputs=[query_input, chatbot], outputs=chatbot)
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
demo.launch(share=True)
|