Spaces:
Runtime error
Runtime error
K Sudhakar Reddy
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,68 @@
|
|
1 |
-
from transformers import pipeline
|
2 |
import gradio as gr
|
|
|
|
|
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
interface.launch()
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torchvision.transforms as transforms
|
4 |
+
from PIL import Image
|
5 |
+
import os
|
6 |
|
7 |
+
class CatDogClassifier:
|
8 |
+
def __init__(self, model_path="model.pt"):
|
9 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
10 |
+
|
11 |
+
# Load the traced model
|
12 |
+
self.model = torch.jit.load(model_path)
|
13 |
+
self.model = self.model.to(self.device)
|
14 |
+
self.model.eval()
|
15 |
|
16 |
+
# Define the same transforms used during training/testing
|
17 |
+
self.transform = transforms.Compose([
|
18 |
+
transforms.Resize((160, 160)),
|
19 |
+
transforms.ToTensor(),
|
20 |
+
transforms.Normalize(
|
21 |
+
mean=[0.485, 0.456, 0.406],
|
22 |
+
std=[0.229, 0.224, 0.225]
|
23 |
+
)
|
24 |
+
])
|
25 |
+
|
26 |
+
# Class labels
|
27 |
+
self.labels = ['Dog', 'Cat']
|
28 |
|
29 |
+
@torch.no_grad()
|
30 |
+
def predict(self, image):
|
31 |
+
if image is None:
|
32 |
+
return None
|
33 |
+
|
34 |
+
# Convert to PIL Image if needed
|
35 |
+
if not isinstance(image, Image.Image):
|
36 |
+
image = Image.fromarray(image).convert('RGB')
|
37 |
+
|
38 |
+
# Preprocess image
|
39 |
+
img_tensor = self.transform(image).unsqueeze(0).to(self.device)
|
40 |
+
|
41 |
+
# Get prediction
|
42 |
+
output = self.model(img_tensor)
|
43 |
+
probabilities = torch.nn.functional.softmax(output[0], dim=0)
|
44 |
+
|
45 |
+
# Create prediction dictionary
|
46 |
+
return {
|
47 |
+
self.labels[idx]: float(prob)
|
48 |
+
for idx, prob in enumerate(probabilities)
|
49 |
+
}
|
50 |
|
51 |
+
# Create classifier instance
|
52 |
+
classifier = CatDogClassifier()
|
53 |
+
|
54 |
+
# Create Gradio interface
|
55 |
+
demo = gr.Interface(
|
56 |
+
fn=classifier.predict,
|
57 |
+
inputs=gr.Image(),
|
58 |
+
outputs=gr.Label(num_top_classes=2),
|
59 |
+
title="Cat vs Dog Classifier",
|
60 |
+
description="Upload an image to classify whether it's a cat or a dog",
|
61 |
+
examples=[
|
62 |
+
["examples/cat.jpg"],
|
63 |
+
["examples/dog.jpg"]
|
64 |
+
]
|
65 |
+
)
|
66 |
|
67 |
+
if __name__ == "__main__":
|
68 |
+
demo.launch()
|
|