Spaces:
Runtime error
Runtime error
from io import BytesIO | |
import matplotlib.pyplot as plt | |
import requests | |
import streamlit as st | |
import torch | |
from PIL import Image | |
from torchvision import models | |
from torchvision.transforms.functional import normalize, resize, to_pil_image, to_tensor | |
from torchcam import methods | |
from torchcam.methods._utils import locate_candidate_layer | |
from torchcam.utils import overlay_mask | |
CAM_METHODS = ["CAM", "GradCAM", "GradCAMpp", "SmoothGradCAMpp", "ScoreCAM", "SSCAM", "ISCAM", "XGradCAM", "LayerCAM"] | |
TV_MODELS = [ | |
"resnet18", | |
"resnet50", | |
"mobilenet_v3_small", | |
"mobilenet_v3_large", | |
"regnet_y_400mf", | |
"convnext_tiny", | |
"convnext_small", | |
] | |
LABEL_MAP = requests.get( | |
"https://raw.githubusercontent.com/anishathalye/imagenet-simple-labels/master/imagenet-simple-labels.json" | |
).json() | |
def main(): | |
# Wide mode | |
st.set_page_config(layout="wide") | |
# Designing the interface | |
st.title("TorchCAM: class activation explorer") | |
# For newline | |
st.write("\n") | |
# Set the columns | |
cols = st.columns((1, 1, 1)) | |
cols[0].header("Input image") | |
cols[1].header("Raw CAM") | |
cols[-1].header("Overlayed CAM") | |
# Sidebar | |
# File selection | |
st.sidebar.title("Input selection") | |
# Disabling warning | |
st.set_option("deprecation.showfileUploaderEncoding", False) | |
# Choose your own image | |
uploaded_file = st.sidebar.file_uploader("Upload files", type=["png", "jpeg", "jpg"]) | |
if uploaded_file is not None: | |
img = Image.open(BytesIO(uploaded_file.read()), mode="r").convert("RGB") | |
cols[0].image(img, use_column_width=True) | |
# Model selection | |
st.sidebar.title("Setup") | |
tv_model = st.sidebar.selectbox( | |
"Classification model", | |
TV_MODELS, | |
help="Supported models from Torchvision", | |
) | |
default_layer = "" | |
if tv_model is not None: | |
with st.spinner("Loading model..."): | |
model = models.__dict__[tv_model](pretrained=True).eval() | |
default_layer = locate_candidate_layer(model, (3, 224, 224)) | |
if torch.cuda.is_available(): | |
model = model.cuda() | |
target_layer = st.sidebar.text_input( | |
"Target layer", | |
default_layer, | |
help='If you want to target several layers, add a "+" separator (e.g. "layer3+layer4")', | |
) | |
cam_method = st.sidebar.selectbox( | |
"CAM method", | |
CAM_METHODS, | |
help="The way your class activation map will be computed", | |
) | |
if cam_method is not None: | |
cam_extractor = methods.__dict__[cam_method]( | |
model, target_layer=[s.strip() for s in target_layer.split("+")] if len(target_layer) > 0 else None | |
) | |
class_choices = [f"{idx + 1} - {class_name}" for idx, class_name in enumerate(LABEL_MAP)] | |
class_selection = st.sidebar.selectbox("Class selection", ["Predicted class (argmax)"] + class_choices) | |
# For newline | |
st.sidebar.write("\n") | |
if st.sidebar.button("Compute CAM"): | |
if uploaded_file is None: | |
st.sidebar.error("Please upload an image first") | |
else: | |
with st.spinner("Analyzing..."): | |
# Preprocess image | |
img_tensor = normalize(to_tensor(resize(img, (224, 224))), [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
if torch.cuda.is_available(): | |
img_tensor = img_tensor.cuda() | |
# Forward the image to the model | |
out = model(img_tensor.unsqueeze(0)) | |
# Select the target class | |
if class_selection == "Predicted class (argmax)": | |
class_idx = out.squeeze(0).argmax().item() | |
else: | |
class_idx = LABEL_MAP.index(class_selection.rpartition(" - ")[-1]) | |
# Retrieve the CAM | |
act_maps = cam_extractor(class_idx, out) | |
# Fuse the CAMs if there are several | |
activation_map = act_maps[0] if len(act_maps) == 1 else cam_extractor.fuse_cams(act_maps) | |
# Plot the raw heatmap | |
fig, ax = plt.subplots() | |
ax.imshow(activation_map.squeeze(0).cpu().numpy()) | |
ax.axis("off") | |
cols[1].pyplot(fig) | |
# Overlayed CAM | |
fig, ax = plt.subplots() | |
result = overlay_mask(img, to_pil_image(activation_map, mode="F"), alpha=0.5) | |
ax.imshow(result) | |
ax.axis("off") | |
cols[-1].pyplot(fig) | |
if __name__ == "__main__": | |
main() |