Spaces:
Runtime error
Runtime error
File size: 66,743 Bytes
0558aa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true,
"id": "11BEbhRng15X"
},
"outputs": [],
"source": [
"\"\"\"\n",
"You can run either this notebook locally (if you have all the dependencies and a GPU) or on Google Colab.\n",
"\n",
"Instructions for setting up Colab are as follows:\n",
"1. Open a new Python 3 notebook.\n",
"2. Import this notebook from GitHub (File -> Upload Notebook -> \"GitHub\" tab -> copy/paste GitHub URL)\n",
"3. Connect to an instance with a GPU (Runtime -> Change runtime type -> select \"GPU\" for hardware accelerator)\n",
"4. Run this cell to set up dependencies.\n",
"5. Restart the runtime (Runtime -> Restart Runtime) for any upgraded packages to take effect\n",
"\n",
"\n",
"NOTE: User is responsible for checking the content of datasets and the applicable licenses and determining if suitable for the intended use.\n",
"\"\"\"\n",
"# If you're using Google Colab and not running locally, run this cell to install dependencies\n",
"\n",
"\n",
"# Install dependencies\n",
"!pip install wget\n",
"!apt-get update && apt-get install -y sox libsndfile1 ffmpeg\n",
"!pip install text-unidecode\n",
"!pip install omegaconf\n",
"\n",
"BRANCH='main'\n",
"\n",
"!python -m pip install git+https://github.com/NVIDIA/NeMo.git@{BRANCH}#egg=nemo_toolkit[asr]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ne4_FHPaoVyq"
},
"outputs": [],
"source": [
"# import libraries\n",
"\n",
"import glob\n",
"import json\n",
"import librosa\n",
"import numpy as np\n",
"from omegaconf import OmegaConf, open_dict\n",
"import os\n",
"import soundfile as sf\n",
"import subprocess\n",
"import tarfile\n",
"import tqdm\n",
"import wget\n",
"import re\n",
"\n",
"import torch"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "Y0fqj-DkEU2y"
},
"source": [
"# Introduction to Canary models\n",
"Canary is a family of multilingual, multitask speech-to-text models based on the attention encoder-decoder (AED) architecture. All Canary models use a FastConformer encoder and Transformer decoder. The current lineup includes `canary-1b-v2`, `canary-1b`, `canary-1b-flash`, and `canary-180m-flash`.\n",
"\n",
"`canary-1b-v2` is the latest and most comprehensive model, supporting speech recognition for 25 European languages, as well as translation between English and these languages (En<->X). It introduces new features such as parallel chunking and full timestamp prediction across all supported languages.\n",
"\n",
"`canary-1b-flash` (883M parameters) and canary-180m-flash (182M parameters) are optimized for speed and efficiency. These models support speech recognition in English, German, French, and Spanish, as well as translation between English and German/French/Spanish (in both directions). They also offer output with or without punctuation and capitalization (PnC), and support word-level timestamp prediction for all four languages. The canary-1b-flash model achieves faster and more accurate results than `canary-1b` by increasing the encoder size and reducing the decoder size, improving speed while maintaining comparable model capacity.\n",
"In this tutorial, we will focus primarily on the Canary-1b-v2 model.\n",
"Refer to the following resources for more details:\n",
"\n",
"🤗[canary-1b-v2](https://huggingface.co/nvidia/canary-1b-v2)\n",
"\n",
"🤗[canary-1b](https://huggingface.co/nvidia/canary-1b)\n",
"\n",
"🤗[canary-1b-flash](https://huggingface.co/nvidia/canary-1b-flash)\n",
"\n",
"🤗[canary-180m-flash](https://huggingface.co/nvidia/canary-180m-flash)\n",
"\n",
"[Canary-1B paper](https://arxiv.org/abs/2406.19674)\n",
"\n",
"[Canary-1B-flash paper](https://arxiv.org/abs/2503.05931)\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "8itHPnZO5ATe"
},
"source": [
"## Components of Canary architecture\n",
"\n",
"### Model architecture\n",
"\n",
"The input audio is converted into 128-dim log-mel features extracted for 25ms window with a stride of 10ms. The spectrogram features are then processed through the encoder. The decoder conditions on the encoder output and decoder prompt to autoregressively generate one token at a time.\n",
"\n",
"<img src=\"images/promptformat.png\" width=\"750\" height=\"400\">\n",
"\n",
"### Decoder prompt\n",
"\n",
"Decoder prompt is the key to attaining multitask capability with Canary models. Decoder prompt is a sequence of special tokens that define the precise task (language output text, punctuations, timestamps, etc.) to be performed on the input audio.\n",
"As shown in the figure, the decoder takes a sequence of prompt tokens as input before generating output text. The example prompt sequence corresponds to English speech recognition as the language for input audio and output text is set to English. The format of the decoder prompt is defined by `TEMPLATE[\"user\"][\"template\"]` in the [Canary2PromptFormatter](https://github.com/NVIDIA/NeMo/blob/main/nemo/collections/common/prompts/canary2.py).\n",
"\n",
"\n",
"### Tokenizers\n",
"<img src=\"images/tokenizer.png\" width=\"600\" height=\"400\">\n",
"\n",
"\n",
"For Canary-1b-v2, we use a unified SentencePiece [tokenizer](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py).\n",
"\n",
"For all other Canary models, we use the concatenated [tokenizer](https://github.com/NVIDIA/NeMo/blob/main/nemo/collections/common/tokenizers/canary_tokenizer.py), which combines language-specific SentencePiece tokenizers with shared special tokens. Each language uses a vocabulary of 1024 subword tokens, and these per-language vocabularies are concatenated together as shown in the figure below.\n",
"\n",
"In addition to language-specific tokens, Canary uses 1152 tokens to represent special tokens. Special tokens include generic tokens such as `<|startoftranscript|>`, `<|endoftext|>`, `<pad>`, as well as many other task-specific tokens.\n",
"Listed below is a variety of special tokens that the default tokenizer includes. This should give an idea of various tasks that can be supported with the current tokenizer and prompt formatter.\n",
"\n",
"* Task-specific tokens; these provide a control for tasks and output characteristics, such as decoding with or without punctuations and capitalizations (`<|pnc|>` or `<|nopnc|>`), timestamp prediction (`<|timestamp|>` or `<|notimestamp|>`), emotion recognition (`<|emo:undefined|>`, `<|emo:neutral|>`, `<|emo:happy|>`, `<|emo:sad|>`, `<|emo:angry|>`).\n",
"* Language identity tokens; the default `spl_tokens` tokenizer supports 184 language IDs, including an `<|unklang|>` token. Language identity tokens are used to encode `source_lang`, `target_lang` fields in the manifest.\n",
"* Integer tokens; timestamp prediction uses integer values, between `0` and `899` to denote frame numbers corresponding to word start and word end.\n",
"* Speaker ID tokens; although current Canary-flash models are not trained for speaker identity, the default tokenizer includes 16 speaker ID tokens, `<|spk0|> ... <|spk15|>`.\n",
"* Additional tokens; the default tokenizer incldes 30 additional tokens, `<|spltoken0|> ... <|spltoken29|>`, not assigned to any perform any particular function. The user can use one of these to represent a custom behavior."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "PJczuX9PKI8O"
},
"source": [
"\n",
"# Outline\n",
"\n",
"The tutorial is divided into four sections.\n",
"\n",
"First, we see how to perform inference using Canary models, specifically speech recognition, translation, and timestamp prediction.\n",
"\n",
"Then we learn how to train a Canary model in two ways -- from scratch and from an initial checkpoint. We will train a model for English speech recognition.\n",
"\n",
"Next, we look deeper into various use cases for Canary model with detailed guidelines on how to use Canary-style training for various tasks.\n",
"\n",
"Finally, we share some practitioner's tips from our experience working with Canary models."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "FbYgKwsi3zuH"
},
"source": [
"# Download LibriLight data\n",
"We download LibriLight data so we can run inference on audio samples. We'll later use the small 1 hour split for training a custom Canary model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "yyAZeHHxdwo1"
},
"outputs": [],
"source": [
"def download_and_prepare_librilight_data(data_dir=\"datasets\"):\n",
" if not os.path.exists(data_dir):\n",
" os.makedirs(data_dir)\n",
"\n",
" libri_data_dir = os.path.join(data_dir, 'LibriLight')\n",
" libri_tgz_file = f'{data_dir}/librispeech_finetuning.tgz'\n",
"\n",
" if not os.path.exists(libri_tgz_file):\n",
" url = \"https://dl.fbaipublicfiles.com/librilight/data/librispeech_finetuning.tgz\"\n",
" libri_path = wget.download(url, data_dir, bar=None)\n",
" print(f\"Dataset downloaded at: {libri_path}\")\n",
"\n",
" if not os.path.exists(libri_data_dir):\n",
" tar = tarfile.open(libri_tgz_file)\n",
" tar.extractall(path=libri_data_dir)\n",
"\n",
" print(f'LibriLight data is ready at {libri_data_dir}')\n",
"\n",
"download_and_prepare_librilight_data()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "eq2NmXaJBtHv"
},
"source": [
"# Inference with Canary-1b-v2 model\n",
"\n",
"We run inference on a sample audio files, both short and long, to demonstrate the various capabilities supported by the released Canary-1b-v2 checkpoints.\n",
"\n",
"Canary inference uses the `trancribe` method of `EncDecMultiTaskModel`.\n",
"The user can control the task and language for the inference using specific arguments to `transcribe`. These arguments control the prompt token sequence passed as an input to the decoder (decoder prompt is discussed in more detail in the next section).\n",
"\n",
"See examples below for using `transcribe` to perform various tasks."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "O1SXLoY_4VXi"
},
"outputs": [],
"source": [
"from pydub import AudioSegment\n",
"from IPython.display import Audio, display\n",
"\n",
"def listen_to_audio(audio_path, offset=0.0, duration=-1):\n",
" audio = AudioSegment.from_file(audio_path)\n",
" start_ms = int(offset * 1000)\n",
" if duration == -1:\n",
" end_ms = -1\n",
" else:\n",
" end_ms = int((offset+duration) * 1000)\n",
"\n",
" segment = audio[start_ms:end_ms]\n",
" audio = Audio(segment.export(format='wav').read())\n",
" display(audio)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "DQnHNwq1NayC"
},
"source": [
"## Load model\n",
"\n",
"Load the model of your choice.\n",
"\n",
"We use `canary-1b-v2` in these inference examples.\n",
"\n",
"If testing a local checkpoint, use the following code snippet in place of the one below:\n",
"```\n",
"canary_model = EncDecMultiTaskModel.restore_from(\n",
" restore_path=ckpt_path,\n",
" map_location=map_location,\n",
" )\n",
"```\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true,
"id": "gQSiM4RI4cSj"
},
"outputs": [],
"source": [
"from nemo.collections.asr.models import EncDecMultiTaskModel\n",
"map_location = 'cuda' if torch.cuda.is_available() else 'cpu'\n",
"canary_model = EncDecMultiTaskModel.from_pretrained('nvidia/canary-1b-v2', map_location=map_location)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ijJeUpYj7DEd"
},
"source": [
"## Speech-to-text recognition\n",
"\n",
"Here we pass the `source_lang` (language of audio input) and `target_lang` (language of recognized text) as `en`. Thus, this performs english speech recognition.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "9DFBI4Ag7NT3"
},
"outputs": [],
"source": [
"audio_path = \"datasets/LibriLight/librispeech_finetuning/1h/0/clean/3526/175658/3526-175658-0000.flac\"\n",
"listen_to_audio(audio_path)\n",
"\n",
"# To transcribe in a particular language; this example is for English, but will work for each of 25 supported languages\n",
"transcript = canary_model.transcribe(\n",
" audio=[audio_path],\n",
" batch_size=1,\n",
" source_lang='en',\t# en: English, es: Spanish, fr: French, de: German\n",
" target_lang='en',\t# should be same as \"source_lang\" for 'asr'\n",
")\n",
"print(\"\\n\\nEnglish speech recognition:\")\n",
"print(f' \\\"{transcript[0].text}\\\"')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "LufezWfD4Xj0"
},
"source": [
"## Speech-to-text translation\n",
"\n",
"Here we pass the `source_lang` (language of audio input) as `en` and `target_lang` (language of transcription text) as `es`. Thus, this performs English to Spanish speech-to-text translation."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "qo_kC4RA7pkR"
},
"outputs": [],
"source": [
"transcript = canary_model.transcribe(\n",
" audio=[audio_path],\n",
" batch_size=1,\n",
" source_lang='en',\t# en: English, es: Spanish, fr: French, de: German\n",
" target_lang='es',\t# should be same as \"source_lang\" for 'asr'\n",
")\n",
"print(\"\\n\\nSpeech to text translation form English to Spanish with punctuations and capitalizations:\")\n",
"print(f' \\\"{transcript[0].text}\\\"')\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Timestamp Generation Workflow\n",
"\n",
"Currently timestamps generation for `canary-1b-v2` is done via 3 steps\n",
"\n",
"1. The audio is passed through the Canary v2 model, which is an AED (Attention Encoder-Decoder) multi-task model. The output is a token sequence produced by the decoder of the model.\n",
"\n",
"2. The same audio is passed through the Multi-lingual Parakeet CTC model. From this model, we obtain the log-probabilities matrix produced by the CTC decoder of the Parakeet model. \n",
" This matrix represents the (log) probability of every possible token for each time frame (80ms time windows for the given models).\n",
"\n",
"3. Viterbi Decoding: Given the token sequence (from Canary v2) and the log-probability matrix (from multilingual Parakeet CTC), we perform Viterbi Decoding. The goal is to find the most likely sequence of predicted tokens aligned over time frames.\n",
"\n",
"<img src=\"images/canary2_timestamps.png\" width=\"1000\" height=\"400\">"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "CG2mE4HP7rw0"
},
"source": [
"\n",
"## Timestamp prediction\n",
"\n",
"Timestamp prediction is supported for all langauges and can be performed with timestamp prediction by passing `timestamps=True` argument."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "LXsCFuevmfEm"
},
"outputs": [],
"source": [
"# To recognize with timestamps\n",
"transcript = canary_model.transcribe(\n",
" audio=[audio_path],\n",
" batch_size=1,\n",
" source_lang='en',\t# en: English or other supported language\n",
" target_lang='en',\t# should be same as \"source_lang\" for 'asr'\n",
" timestamps=True\n",
")\n",
"print(\"\\n\\nEnglish speech to text recognition with timestamp prediction:\\n\")\n",
"\n",
"print(f'Predicted output: \\n\"{transcript[0].text}\\\"')\n",
"\n",
"print('\\nSegment level timestamps:')\n",
"for sample in transcript[0].timestamp['segment']:\n",
" segment, start, end = sample['segment'], sample['start'], sample['end']\n",
" print(f'{segment}')\n",
" print(f'Segment start: {start:.2f}s')\n",
" print(f'Segment end: {end:.2f}s\\n')\n",
"\n",
"print('\\nWord level timestamps:')\n",
"for sample in transcript[0].timestamp['word']:\n",
" word, start, end = sample['word'], sample['start'], sample['end']\n",
" print(f'{word:<15}[{start:.2f}s, {end:.2f}s]')\n",
" # listen_to_audio(audio_path, offset=start, duration=(end-start)) # uncomment to listen to word segments"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Mo_yDJKGijH8"
},
"source": [
"## Inference with longform input\n",
"\n",
"Canary models natively handle inputs up to ~40 seconds. For longer audio, the input is split into 30–40 s chunks (minimizing padding on the final chunk) and processed in parallel.\n",
"\n",
"For recordings longer than one hour, processing occurs in consecutive hour‑long segments.\n",
"\n",
"Outputs are seamlessly stitched to produce a single, continuous result.\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "x4JGVDt5AnZz"
},
"source": [
"### Create a longform audio sample\n",
"\n",
"\n",
"As LibriLight does not have a long duration audio, we'll first create one by stitching together all utterances from a story.\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "nSw6pW3ktC89"
},
"outputs": [],
"source": [
"# Creating a longform audio sample\n",
"\n",
"def get_longform_audio_sample(data_dir=\"datasets\"):\n",
" libri_data_dir = os.path.join(data_dir, 'LibriLight')\n",
" audio_paths = glob.glob(os.path.join(libri_data_dir, 'librispeech_finetuning/1h/0/clean/3526/175658/3526-175658-*.flac'))\n",
" audio_paths.sort() # sort by the utterance IDs\n",
" write_path = os.path.join(libri_data_dir, 'longform','-'.join(os.path.basename(audio_paths[0]).split('-')[:2])+'.wav')\n",
" os.makedirs(os.path.dirname(write_path), exist_ok=True)\n",
" longform_audio_data = []\n",
" for audio_path in audio_paths:\n",
" data, sr = librosa.load(audio_path, sr=16000)\n",
" longform_audio_data.extend(data)\n",
" sf.write(write_path, longform_audio_data, sr)\n",
" minutes, seconds = divmod(len(longform_audio_data)/sr, 60)\n",
" print(f'{int(minutes)} min {int(seconds)} sec audio file saved at {write_path}')\n",
" return write_path\n",
"\n",
"longform_audio_path = get_longform_audio_sample()\n",
"listen_to_audio(longform_audio_path)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "RhsrobUmAsUe"
},
"source": [
"### Longform inference without timestamps\n",
"\n",
"`.transcribe()` will perform inference on the long audio file `datasets/LibriLight/longform/3526-175658.wav`, which is currently just the one file that we created above. Alternatively you can also pass a path to a manifest file. We will discuss manifest creation in the the next section.."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true,
"id": "0zT_Aiw5Ax6U"
},
"outputs": [],
"source": [
"transcript = canary_model.transcribe(\n",
" audio=[longform_audio_path],\n",
" batch_size=1,\n",
" source_lang='en',\n",
" target_lang='en',\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "SfIXyW6vA1mH"
},
"outputs": [],
"source": [
"def print_sentences_per_item(items):\n",
" for i, item in enumerate(items, 1):\n",
" text = item.text if hasattr(item, \"text\") else str(item)\n",
" sentences = [s.strip() for s in re.split(r'(?<=[.!?])\\s+', text) if s.strip()]\n",
" print(f\"--- Audio {i} ---\")\n",
" for s in sentences:\n",
" print(s if s[-1] in \".!?\" else s + \".\")\n",
" print()\n",
"print_sentences_per_item(transcript)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Rw-OQmQ5AvMh"
},
"source": [
"### Longform inference with timestamps\n",
"\n",
"We run the same command as above with `timestamps=True`. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "saSBnOJuA34-"
},
"outputs": [],
"source": [
"transcript = canary_model.transcribe(\n",
" audio=[longform_audio_path],\n",
" batch_size=1,\n",
" source_lang='en',\n",
" target_lang='en',\n",
" timestamps=True,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "qd0cDiibA633"
},
"outputs": [],
"source": [
"print('\\nWord level timestamps:')\n",
"for sample in transcript[0].timestamp['word']:\n",
" word, start, end = sample['word'], sample['start'], sample['end']\n",
" print(f'{word:<15}[{start:.2f}s, {end:.2f}s]')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "6c28bgnN9M8g"
},
"source": [
"# Train a Canary model on custom data\n",
"\n",
"Now we will see how to train a Canary model on a custom data. Later we discuss how we can incorporate more languages and tasks.\n",
"\n",
"In this example we'll see two ways to train a Canary model on a 1 hour split of the LibriLight data:\n",
"\n",
"1. A small, 2-layer encoder, 2-layer decoder, version of the model trained from scratch.\n",
"\n",
"2. A 180M model initialized from `canary-180m-flash`.\n",
"\n",
"Different components needed for training are passed as an yaml config file to the training script.\n",
"\n",
"Next, we'll prepare the following components required to set up the training,\n",
"\n",
"```\n",
"model.train_ds.manifest_filepath=$MANIFEST_PATH \\\n",
"model.tokenizer.langs.en.dir=\"$LANG_TOKENIZER_DIR\" \\\n",
"model.tokenizer.langs.spl_tokens.dir=\"$SPL_TOKENIZER_DIR\" \\\n",
"model.prompt_format=\"canary2\" \\\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"canary_model = EncDecMultiTaskModel.from_pretrained('nvidia/canary-180m-flash', map_location=map_location)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "yXAj7KHP2mW7"
},
"source": [
"## Prepare manifest\n",
"\n",
"We'll build manifest from 1 hour split of LibriLight data. The manifest file has a dictionary corresponding to each training sample, something like this:\n",
"```\n",
"manifest_sample = {\n",
" \"audio_filepath\": audio_path,\n",
" \"duration\": duration,\n",
" \"text\": transcript,\n",
" \"target_lang\": \"en\",\n",
" \"source_lang\": \"en\",\n",
" \"pnc\": \"False\"\n",
"}\n",
"```\n",
"\n",
"The prepared manifest file will be saved at `datasets/LibriLight/train_manifest.json`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "p29r_HSxcwYe"
},
"outputs": [],
"source": [
"def build_manifest(data_root, manifest_path):\n",
" transcript_list = glob.glob(os.path.join(data_root, 'LibriLight/librispeech_finetuning/1h/**/*.txt'), recursive=True)\n",
" tot_duration = 0\n",
" with open(manifest_path, 'w') as fout:\n",
" pass # make sure a new file is created\n",
" for transcript_path in tqdm.tqdm(transcript_list):\n",
" with open(transcript_path, 'r') as fin:\n",
" wav_dir = os.path.dirname(transcript_path)\n",
" with open(manifest_path, 'a') as fout:\n",
" for line in fin:\n",
" # Lines look like this:\n",
" # fileID transcript\n",
" file_id = line.strip().split(' ')[0]\n",
" audio_path = os.path.join(wav_dir, f'{file_id}.flac')\n",
"\n",
" transcript = ' '.join(line.strip().split(' ')[1:]).lower()\n",
" transcript = transcript.strip()\n",
"\n",
" duration = librosa.core.get_duration(path=audio_path)\n",
" tot_duration += duration\n",
" # Write the metadata to the manifest\n",
" metadata = {\n",
" \"audio_filepath\": audio_path,\n",
" \"duration\": duration,\n",
" \"text\": transcript,\n",
" \"lang\": \"en\",\n",
" \"target_lang\": \"en\",\n",
" \"source_lang\": \"en\",\n",
" \"pnc\": \"False\"\n",
" }\n",
" json.dump(metadata, fout)\n",
" fout.write('\\n')\n",
" print(f'\\n{np.round(tot_duration/3600)} hour audio data ready for training')\n",
"\n",
"data_dir = \"datasets\"\n",
"train_manifest = os.path.join(data_dir, 'LibriLight/train_manifest.json')\n",
"build_manifest(data_dir, train_manifest)\n",
"print(f\"LibriLight train manifests created at {train_manifest}.\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "czGyTkb_8gKy"
},
"source": [
"## Build tokenizer\n",
"\n",
"\n",
"As described in the introduction, we now build a tokenizer for special tokens and for English text from the training data.\n",
"\n",
"**Note** that you do not need to train a new tokenizer if you are initializing from Canary-flash models for a task and language that the default tokenizers already support. At the end of this tutorial we discuss some cases where you'd want to retrain the tokenizer and reinitialize the token embeddings."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "BWJu6aat8l_j"
},
"source": [
"### Build tokenizer for special *tokens*\n",
"\n",
"The tokenizer will be saved at `tokenizers/spl_tokens`. See `tokenizers/spl_tokens/tokenizer.vocab` for a 1152-unit vocabulary of tokens."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"BRANCH='r2.5.0'\n",
"def wget_from_nemo(nemo_script_path, local_dir=\"scripts\"):\n",
" os.makedirs(local_dir, exist_ok=True)\n",
" script_url = f\"https://raw.githubusercontent.com/NVIDIA/NeMo/refs/heads/{BRANCH}/{nemo_script_path}\"\n",
" script_path = os.path.basename(nemo_script_path)\n",
" if not os.path.exists(f\"{local_dir}/{script_path}\"):\n",
" !wget -P {local_dir}/ {script_url}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true,
"id": "MUMjzfht8ffo"
},
"outputs": [],
"source": [
"wget_from_nemo(\"scripts/speech_recognition/canary/build_canary_2_special_tokenizer.py\")\n",
"output_dir = \"tokenizers/spl_tokens\"\n",
"!mkdir -p {output_dir}\n",
"!python scripts/build_canary_2_special_tokenizer.py {output_dir}"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "DcfzLk-E9BKO"
},
"source": [
"### Build language-specific tokenizer\n",
"\n",
"The tokenizer will be saved at `tokenizers/en_libri1h_1024/tokenizer_spe_bpe_v1024`. See `tokenizer.vocab` for a 1024-unit vocabulary of tokens."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true,
"id": "Brc_4kJpB0_1"
},
"outputs": [],
"source": [
"wget_from_nemo('scripts/tokenizers/process_asr_text_tokenizer.py')\n",
"LANG='en'\n",
"DATA='libri1h'\n",
"VOCAB_SIZE=1024\n",
"OUT_DIR = f\"tokenizers/{LANG}_{DATA}_{VOCAB_SIZE}\"\n",
"manifest_path = os.path.join(data_dir, 'LibriLight', 'train_manifest.json')\n",
"train_text_path = os.path.join(data_dir, 'LibriLight', 'train_text.lst')\n",
"with open(manifest_path, \"r\") as f:\n",
" data = [json.loads(line.strip()) for line in f.readlines()]\n",
"with open(train_text_path, \"w\") as f:\n",
" for line in data:\n",
" f.write(f\"{line['text']}\\n\")\n",
"\n",
"!python scripts/process_asr_text_tokenizer.py \\\n",
" --data_file={train_text_path} \\\n",
" --vocab_size={VOCAB_SIZE} \\\n",
" --data_root={OUT_DIR} \\\n",
" --tokenizer=\"spe\" \\\n",
" --spe_type=bpe \\\n",
" --spe_character_coverage=1.0 \\\n",
" --no_lower_case \\\n",
" --log\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "CSPT1tGK6IAL"
},
"source": [
"## Prompt format\n",
"\n",
"Canary-flash decoder generates output text conditioned on audio encoder representations and the decoder prompt. As described in the introduction, Canary-Flash models use [Canary2PromptFormatter](https://github.com/NVIDIA/NeMo/blob/main/nemo/collections/common/prompts/canary2.py), and so we set the `prompt_format` accordingly\n",
"\n",
"```\n",
"model.prompt_format=\"canary2\"\n",
"```\n",
"\n",
"For the samples in our training data the decoder prompt will have the following sequence of special tokens,\n",
"\n",
"`<|startofcontext|><|startoftranscript|><|emo:undefined|><|en|><|en|><|nopnc|><|noitn|><|notimestamp|><|nodiarize|>`\n",
"\n",
"Note that source language and target language are set to `en` for English speech recognition **without** pnc (`<|nopnc|>`), timestamps (`<|notimestamp|>`), emotion recognition (`<|emo:undefined|>`), or diarization (`<|nodiarize|>`)."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "lwMu74rsGsUa"
},
"source": [
"## Train Canary model from scratch\n",
"\n",
"Now we have all the components needed to train. We download a local copy of the training script and the default config. We pass the data and tokenizers we prepared above.\n",
"\n",
"The tokenizers are processed as follows with their language IDs as keys.\n",
"\n",
"```\n",
"model:\n",
" tokenizer:\n",
" langs:\n",
" spl_tokens: # special tokens model\n",
" dir: \"tokenizers/spl_tokens\"\n",
" type: bpe\n",
" en: # English tokenizer\n",
" dir: \"tokenizers/en_libri1h_1024/tokenizer_spe_bpe_v1024\"\n",
" type: bpe\n",
"```\n",
"\n",
"We now train a small Canary model with 2 FastConformer encoder layers and 2 Transformer decoder layers."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "GIaZLI4tD8qn"
},
"outputs": [],
"source": [
"wget_from_nemo('examples/asr/speech_multitask/speech_to_text_aed.py')\n",
"wget_from_nemo('examples/asr/conf/speech_multitask/fast-conformer_aed.yaml', 'config')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "XGnQK_U3_W2d"
},
"outputs": [],
"source": [
"MANIFEST = os.path.join(\"datasets\", \"LibriLight\", 'train_manifest.json')\n",
"!HYDRA_FULL_ERROR=1 python scripts/speech_to_text_aed.py \\\n",
" --config-path=\"../config\" \\\n",
" --config-name=\"fast-conformer_aed.yaml\" \\\n",
" name=\"canary-small\" \\\n",
" model.prompt_format=\"canary2\" \\\n",
" model.train_ds.manifest_filepath={MANIFEST} \\\n",
" model.validation_ds.manifest_filepath={MANIFEST} \\\n",
" model.test_ds.manifest_filepath={MANIFEST} \\\n",
" model.tokenizer.langs.en.dir=\"tokenizers/en_libri1h_1024/tokenizer_spe_bpe_v1024\" \\\n",
" model.tokenizer.langs.spl_tokens.dir=\"tokenizers/spl_tokens\" \\\n",
" spl_tokens.model_dir=\"tokenizers/spl_tokens\" \\\n",
" model.encoder.n_layers=2 \\\n",
" model.transf_decoder.config_dict.num_layers=2 \\\n",
" exp_manager.exp_dir=\"canary_results\" \\\n",
" exp_manager.resume_ignore_no_checkpoint=true \\\n",
" trainer.max_steps=10 \\\n",
" trainer.log_every_n_steps=1"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "6F2XDcwwGA7g"
},
"source": [
"## Train Canary model from a Canary flash checkpoint (aka fine-tuning)\n",
"\n",
"We will now train a Canary model initialized from the `canary-180m-flash` checkpoint; in effect finetuning the `canary-180m-flash` model. This is the same checkpoint that we used to run sample inference in the previous section.\n",
"\n",
"```\n",
"init_from_pretrained_model: canary-180m-flash\n",
"```\n",
"\n",
"For the sake of simplicity, we will retain the exact same model architecture as `canary-180m-flash`. You can choose to include and exclude certain layers and parameters from the initial checkpoint; we discuss these customizations in the next section."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "GXWGI7LyMrd1"
},
"source": [
"### Build config\n",
"\n",
"We'll update the base config that we use in the example above and save the new config as `config/canary-180m-flash-finetune`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "rD7VXLlnNJD4"
},
"outputs": [],
"source": [
"# Load canary model if not previously loaded in this notebook instance\n",
"if 'canary_model' not in locals():\n",
" canary_model = EncDecMultiTaskModel.from_pretrained('nvidia/canary-180m-flash')\n",
"\n",
"base_model_cfg = OmegaConf.load(\"config/fast-conformer_aed.yaml\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "6Gh1fky8oZ2t"
},
"source": [
"In the training config, we should ensure compatibility with the pre-trained model.\n",
"\n",
"1. Set initialization from `canary-180m-flash`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "MU1jdmkALyix"
},
"outputs": [],
"source": [
"base_model_cfg['name'] = 'canary-180m-flash-finetune'\n",
"base_model_cfg.pop(\"init_from_nemo_model\", None)\n",
"base_model_cfg['init_from_pretrained_model'] = \"nvidia/canary-180m-flash\""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "GcDkgzf3MMlk"
},
"source": [
"2. Set path to the tokenizers from the pre-trained model, so as to ensure that the fine-tuning uses a compatible tokenization. The following command reads tokenizers from `canary_model` and saves the files at `canary_flash_tokenizers/{lang}` directories."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "8mu5t-Y0GAT5"
},
"outputs": [],
"source": [
"canary_model.save_tokenizers('./canary_flash_tokenizers/')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "j-Al1IX0NPBG"
},
"outputs": [],
"source": [
"for lang in os.listdir('canary_flash_tokenizers'):\n",
" base_model_cfg['model']['tokenizer']['langs'][lang] = {}\n",
" base_model_cfg['model']['tokenizer']['langs'][lang]['dir'] = os.path.join('canary_flash_tokenizers', lang)\n",
" base_model_cfg['model']['tokenizer']['langs'][lang]['type'] = 'bpe'\n",
"base_model_cfg['spl_tokens']['model_dir'] = os.path.join('canary_flash_tokenizers', \"spl_tokens\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "-DbxIylkNlIQ"
},
"source": [
"3. Ensure that the prompt format and relevant parameters match."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "I6deg7feN6MZ"
},
"outputs": [],
"source": [
"base_model_cfg['model']['prompt_format'] = canary_model._cfg['prompt_format']\n",
"base_model_cfg['model']['prompt_defaults'] = canary_model._cfg['prompt_defaults']"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "PS3LRt3jLt7G"
},
"source": [
"4. Ensure that the model architecture matches."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "s4GFt7OGLtZ-"
},
"outputs": [],
"source": [
"base_model_cfg['model']['model_defaults'] = canary_model._cfg['model_defaults']\n",
"base_model_cfg['model']['preprocessor'] = canary_model._cfg['preprocessor']\n",
"base_model_cfg['model']['encoder'] = canary_model._cfg['encoder']\n",
"base_model_cfg['model']['transf_decoder'] = canary_model._cfg['transf_decoder']\n",
"base_model_cfg['model']['transf_encoder'] = canary_model._cfg['transf_encoder']"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ItNe8gAmPKki"
},
"source": [
"### Launch training\n",
"Save config and launch training."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "_g_vdpioPPEV"
},
"outputs": [],
"source": [
"cfg = OmegaConf.create(base_model_cfg)\n",
"with open(\"config/canary-180m-flash-finetune.yaml\", \"w\") as f:\n",
" OmegaConf.save(cfg, f)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "t1b7vzJwPfWi"
},
"outputs": [],
"source": [
"MANIFEST = os.path.join(\"datasets\", \"LibriLight\", 'train_manifest.json')\n",
"!HYDRA_FULL_ERROR=1 python scripts/speech_to_text_aed.py \\\n",
" --config-path=\"../config\" \\\n",
" --config-name=\"canary-180m-flash-finetune.yaml\" \\\n",
" name=\"canary-180m-flash-finetune\" \\\n",
" model.train_ds.manifest_filepath={MANIFEST} \\\n",
" model.validation_ds.manifest_filepath={MANIFEST} \\\n",
" model.test_ds.manifest_filepath={MANIFEST} \\\n",
" exp_manager.exp_dir=\"canary_results\" \\\n",
" exp_manager.resume_ignore_no_checkpoint=true \\\n",
" trainer.max_steps=10 \\\n",
" trainer.log_every_n_steps=1"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "J2EPlZHQbnFe"
},
"source": [
"# Guidance for different implementation scenarios\n",
"\n",
"You can use the Canary-style training to develop a model for most speech applications. We saw one generic example of training on custom data from scratch on English speech recognition. Here we discuss how to handle several other scenarios.\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "F-bOiydXbymG"
},
"source": [
"## 1. Speech-to-text recognition and translation\n",
"\n",
"When creating the manifest, make sure to pass the appropriate `source_lang` and `target_lang` tokens for each data point.\n",
"\n",
"You'll need language-specific tokenizers for each language. You can build the tokenizer as we saw in the previous section.\n",
"\n",
"The default `spl_tokens` tokenizer, supports 183 language IDs. If you want to use a language not currently represented, you can rebuild the tokenizer with a new set of `spl_tokens` that includes your language of choice.\n",
"\n",
"Finally, in the config add paths to different tokenizers with their language IDs as keys.\n",
"\n",
"```\n",
"model:\n",
" tokenizer:\n",
" langs:\n",
" spl_tokens: # special tokens model\n",
" dir: \"tokenizers/spl_tokens\"\n",
" type: bpe\n",
" en: # English tokenizer (example, replace with whichever language you would like or add tokenizers to add tokenizer for additional languages)\n",
" dir: \"tokenizers/spe_bpe_v1024_en\"\n",
" type: bpe\n",
" de: # German tokenizer (example, replace with whichever language you would like or add tokenizers to add tokenizer for additional languages)\n",
" dir: \"tokenizers/spe_bpe_v1024_en\"\n",
" type: bpe\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "xa1Xg28Mb39_"
},
"source": [
"## 2. Training on a new task: A case of decoding with context\n",
"\n",
"This is an example of a capability that is already supported by the current [Canary2PromptFormatter](https://github.com/NVIDIA/NeMo/blob/main/nemo/collections/common/prompts/canary2.py) as well as the tokenizer model.\n",
"\n",
"```\n",
"\"decodercontext\": Modality.Text\n",
"```\n",
"\n",
"During training, you will pass an additional `decodercontext` argument to the samples in the manifest.\n",
"```\n",
"metadata = {\n",
" \"audio_filepath\": audio_path,\n",
" \"duration\": duration,\n",
" \"text\": transcript,\n",
" \"target_lane\": \"en\",\n",
" \"source_lang\": \"en\",\n",
" \"decodercontext\": decoder_context,\n",
"}\n",
"```\n",
"\n",
"For example, the `decodercontext` can represent past context or certain keywords or topic of the spoken content. The current implementation assumes that `decodercontext` and the output transcript have the same language."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "dXVsHDkIb9mS"
},
"source": [
"## 3. Training on a new task: A case of timestamp prediction\n",
"\n",
"Canary-Flash models support timestamp prediction. Here, we include how the manifest, prompt formatter, special tokens, and tokenizer functions were modified to add timestamps support for the Canary model.\n",
"\n",
"Canary-Flash interleaves word-level timestamps as frame numbers before and after the word. These the frame numbers correspond to the start and end of a word segment. Such \"interleaving\" patterns might be relavant for other tasks as well such as multi-speaker recognition, where you want to interleave speaker ID tokens before appropriate chunks of text tokens spoken by that speaker.\n",
"\n",
"Below, we show how a sample in manifest changes with and without timestamps:\n",
"\n",
"```\n",
"# without timestamps\n",
"metadata = {\n",
" \"audio_filepath\": audio_path,\n",
" \"duration\": duration,\n",
" \"text\": \"it's almost beyond conjecture\",\n",
" \"target_lane\": \"en\",\n",
" \"source_lang\": \"en\",\n",
" \"timestamp\": \"no\",\n",
"}\n",
"```\n",
"\n",
"```\n",
"# with timestamps\n",
"metadata = {\n",
" \"audio_filepath\": audio_path,\n",
" \"duration\": duration,\n",
" \"text\": \"<|3|> it's <|7|> <|8|> almost <|9|> <|14|> beyond <|20|> <|20|> conjecture <|28|>\",\n",
" \"target_lane\": \"en\",\n",
" \"source_lang\": \"en\",\n",
" \"timestamp\": \"yes\",\n",
"}\n",
"```\n",
"\n",
"In order to support this functionality, the [Canary2PromptFormatter](https://github.com/NVIDIA/NeMo/blob/main/nemo/collections/common/prompts/canary2.py) should have the relevant slot value and the default values:\n",
"\n",
"```\n",
"# Should we predict timestamps?\n",
"\"timestamp\": Modality.TextLiteral(\n",
" \"yes\",\n",
" \"no\",\n",
" \"true\",\n",
" \"True\",\n",
" \"false\",\n",
" \"False\",\n",
" \"1\",\n",
" \"0\",\n",
" \"timestamp\",\n",
" \"notimestamp\",\n",
" \"<|timestamp|>\",\n",
" \"<|notimestamp|>\",\n",
"),\n",
"```\n",
"\n",
"The default can be set as `<|notimestamp|>`:\n",
"```\n",
"optional_slots = {\n",
" \"decodercontext\": \"\",\n",
" \"emotion\": \"<|emo:undefined|>\",\n",
" \"itn\": \"<|noitn|>\",\n",
" \"timestamp\": \"<|notimestamp|>\",\n",
" \"diarize\": \"<|nodiarize|>\",\n",
" \"pnc\": \"<|pnc|>\", \n",
"}\n",
"```\n",
"\n",
"Additionally we need tokens to support these additional task-related tokens, `<|timestamp|>`, `<|notimestamp|>`, and integer tokens to encode frame indices.\n",
"We add 900 integers to the list special tokens along with task-related tokens and rebuild the tokenizer as previously discussed.\n",
"\n",
"Now the transcript is a mix of tokens from `spl_tokens` tokenizer (frame indices) and tokens from a language-specific tokenizer.\n",
"The [canary_tokenizer](https://github.com/NVIDIA/NeMo/blob/main/nemo/collections/common/tokenizers/canary_tokenizer.py) handles this by adding a modified `_text_to_ids` method.\n",
"\n",
"\n",
"```\n",
"def _text_to_ids_maybe_with_timestamps(self, text_no_eos, lang_id) -> list[int]:\n",
" time_pattern = re.compile(r\"<\\|\\d+\\|>\")\n",
" time_text = \"\".join(time_pattern.findall(text_no_eos))\n",
" has_timestamp = bool(time_text)\n",
" if not has_timestamp:\n",
" return super().text_to_ids(text_no_eos, lang_id)\n",
" else:\n",
" text_without_timestamps = time_pattern.sub(\"\", text_no_eos).strip()\n",
" return self._text_with_timestamps_to_ids(text_without_timestamps, time_text, lang_id)\n",
"\n",
"```\n",
"\n",
"Once these changes are in place, you should be able to train the model on data with word-level timestamps."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ejjCj3XfcIpR"
},
"source": [
"## 4. Training on a new task: A case of speech summarization\n",
"\n",
"Speech summarization is an example of completely new task, meaning, neither the prompt format nor the default special tokens have an explicit support for this task.\n",
"\n",
"You will start with modifying [Canary2PromptFormatter](https://github.com/NVIDIA/NeMo/blob/main/nemo/collections/common/prompts/canary2.py) or even writing your own custom prompt formatter. [This tutorial](https://github.com/NVIDIA/NeMo/blob/main/tutorials/multimodal/Prompt%20Formatter%20Tutorial.ipynb) has useful references on modifying and building custom prompt formatter.\n",
"\n",
"\n",
"One possible way to modify the existing promp format is to add an optional `\"summarize\"` key whose default value is `false`:\n",
"```\n",
"# should we summarize?\n",
"\"summarize\": Modality.TextLiteral(\n",
" \"yes\",\n",
" \"no\",\n",
" \"true\",\n",
" \"True\",\n",
" \"false\",\n",
" \"False\",\n",
" \"1\",\n",
" \"0\",\n",
" \"<|summarize|>\",\n",
" \"<|nosummarize|>\"\n",
"),\n",
"```\n",
"\n",
"The default can be set as `<|nosummarize|>`:\n",
"```\n",
"optional_slots = {\n",
" \"decodercontext\": \"\",\n",
" \"emotion\": \"<|emo:undefined|>\",\n",
" \"itn\": \"<|noitn|>\",\n",
" \"timestamp\": \"<|notimestamp|>\",\n",
" \"diarize\": \"<|nodiarize|>\",\n",
" \"pnc\": \"<|pnc|>\", \n",
" \"summarize\": \"<|nosummarize|>\",\n",
"}\n",
"```\n",
"Then, you'll pass `\"summarize\": true` to the manifest for samples from speech summarization data, where the corresponding `text` will refer to the summary text.\n",
"\n",
"```\n",
"metadata = {\n",
" \"audio_filepath\": audio_path,\n",
" \"duration\": duration,\n",
" \"text\": summary, # note that this is now a text summary and not a transcript\n",
" \"target_lane\": \"en\",\n",
" \"source_lang\": \"en\",\n",
" \"summarize\": \"true\",\n",
"}\n",
"```\n",
"\n",
"The default list of special tokens does not have `<|summarize|>` and `<|nosummarize|>` in the vocabulary. So you'll want to build a new tokenizer for the new vocabulary of `spl_tokens`.\n",
"\n",
"You can selectively retain token embeddings for the matched tokens, or simply reinitialize all token embeddings.\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "MhTpxSXJE_R6"
},
"source": [
"## 5. Starting from Canary-flash checkpoint\n",
"\n",
"For any of the above scenarios, you may choose to intialize the model from one of the public Canary-flash checkpoints. In the previous section we saw a working example of fine-tuning from a Canary-flash checkpoint. Here we see how we can customize the arguments.\n",
"\n",
"We use the `include` and `exclude` paramaters to appropriately restore or drop certain weights, in case there is a difference in tokenizer or model architecture.\n",
"\n",
"\n",
" (i) Initialize all the parameters\n",
"\n",
" ```\n",
" init_from_pretrained_model:\n",
" model0:\n",
" name: \"nvidia/canary-180m-flash\"\n",
" ```\n",
"\n",
" (ii) Initialize just the encoder:\n",
" ```\n",
" init_from_pretrained_model:\n",
" model0:\n",
" name: \"nvidia/canary-180m-flash\"\n",
" include: [\"encoder\"]\n",
" ```\n",
"\n",
" (iii) Initialize encoder and decoder but not the token embeddings (relevant for scenarios that use a different tokenizer):\n",
" ```\n",
" init_from_pretrained_model:\n",
" model0:\n",
" name: \"nvidia/canary-180m-flash\"\n",
" exclude: [\"transf_decoder._embedding.token_embedding\", \"log_softmax.mlp.layer0\"]\n",
"\n",
" ```\n",
"\n",
" (iv) If you wish further customization that cannot be handled with just these arguments, you can modify https://github.com/NVIDIA/NeMo/blob/main/nemo/core/classes/modelPT.py. Specifically, modify the following snippet of code\n",
"\n",
" ```\n",
" dict_to_load = {}\n",
" for k, v in state_dict.items():\n",
" should_add = False\n",
" # if any string in include is present, should add\n",
" for p in include:\n",
" if p in k:\n",
" should_add = True\n",
" break\n",
" # except for if any string from exclude is present\n",
" for e in exclude:\n",
" if e in k:\n",
" excluded_param_names.append(k)\n",
" should_add = False\n",
" break\n",
" if should_add:\n",
" dict_to_load[k] = v\n",
" ```"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "uKCijB1ijs6_"
},
"source": [
"# Practitioner's tips"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "mWUkwjPfFk_J"
},
"source": [
"## Starting from a pre-trained checkpoint\n",
"\n",
"In our experience working with Canary, we noticed that starting from a pre-trained speech encoder, greatly helps convergence. Especially for larger models (1B+ params) initializing from a pretrained encoder may even be required to stabilize the training.\n",
"\n",
"Canary-180M-Flash 17-layer fastconformer encoder was initialized from a 17-layer fastconformer encoder of a transducer speech recognition model ([model](https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_multilingual_fastconformer_hybrid_large_pc_blend_eu/files), [config](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/fastconformer/fast-conformer_transducer_bpe.yaml#L29)). The 4-layer transformer decoder was initialized from scratch.\n",
"\n",
"Canary-1B-Flash has 32-layer fastconformer encoder. The first 24 layers were initialized from a 24-layer fastconfromer encoder of a transducer speech recognition model and the rest were randomly initalized. This 24-layer model was training internally with this [config](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/fastconformer/fast-conformer_transducer_bpe.yaml#L31)."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "jfFcQv0Pj1Tj"
},
"source": [
"## Training Canary for multiple tasks\n",
"\n",
"We have seen that Canary-Flash models support multiple capabilities -- speech recognition in four languages (ASR), speech to text translation (AST)for six language pairs, timestamp (TS) prediction in four languages. Canary-Flash models are also optimized to be robust to background noise (NR) and hallucination (HR).\n",
"\n",
"These capabilties were achieved over three stages of training:\n",
"* **Stage 1**: ASR+AST\n",
"* **Stage 2**: ASR+AST+HR+NR\n",
"* **Stage 3**: ASR+AST+HR+NR+TS\n",
"\n",
"At each stage, we add new capability to the model and at the same time we continue supervised training for previously learned capabilities. This is essential for the model to learn without forgetting.\n",
"\n",
"So, whenever you perform Canary-style training, irrespective of whether or not you start from a Canary-Flash checkpoint, make sure that the training data mix includes supervision for all the capabilities (tasks and languages) that you wish the final model to learn and retain. "
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "tVmcFlA5Ftpu"
},
"source": [
"## Training efficiency with 2-D bucketing and OOMptimizer\n",
"\n",
"Canary-Flash training is also optimized for optimal GPU utilization. 2-D bucketing and OOMptimizer are the two key components of for optimal GPU utilization, handled by the config as shown below.\n",
"```\n",
"model:\n",
" train_ds:\n",
" use_bucketing: true\n",
" bucket_duration_bins: [[3.79,27],[3.79,65],[4.8,34],[4.8,66],[5.736,39],[5.736,73],[6.42,44],[6.42,79],[7.182,47],[7.182,87],[8.107,52],[8.107,100],[8.78,60],[8.78,111],[9.62,66],[9.62,115],[10.47,71],[10.47,127],[11.14,76],[11.14,139],[11.8,78],[11.8,139],[12.47,82],[12.47,150],[13.02,88],[13.02,160],[13.55,92],[13.55,160],[14.1,94],[14.1,168],[14.64,97],[14.64,169],[15.15,101],[15.15,175],[15.63,102],[15.63,170],[16.09,104],[16.09,180],[16.63,107],[16.63,186],[17.17,109],[17.17,184],[17.71,113],[17.71,206],[18.18,116],[18.18,208],[18.67,119],[18.67,209],[19.13,123],[19.13,210],[19.61,125],[19.61,226],[20.18,126],[20.18,232],[32.467,184],[32.467,321],[36.567,243],[36.567,398],[40.0,272],[40.0,437]]\n",
" bucket_batch_size: [334,314,264,248,221,214,196,190,174,169,155,146,142,134,126,123,116,112,106,103,103,95,95,92,92,89,89,86,84,82,80,78,78,76,76,74,74,72,72,68,68,66,66,64,64,62,62,60,60,58,58,56,56,54,33,32,29,28,26,25]\n",
"```\n",
"\n",
"See these parameters for `canary-180m-flash` model:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "UiAbyTiyTEXt"
},
"outputs": [],
"source": [
"# Load canary model if not previously loaded in this notebook instance\n",
"if 'canary_model' not in locals():\n",
" canary_model = EncDecMultiTaskModel.from_pretrained('nvidia/canary-180m-flash')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "LP2E0SgvSvI1"
},
"outputs": [],
"source": [
"print('bucket_duration_bins: \\n', canary_model._cfg['train_ds']['bucket_duration_bins'])\n",
"print('bucket_batch_size: \\n', canary_model._cfg['train_ds']['bucket_batch_size'])"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "l8DJDwyUS3q4"
},
"source": [
"Simply put, these tools set the optimal batch statistics after considering the distribution of lengths of input audio, lengths of decoder outputs (decoder prompt and tokenized transcript), and model size. Bucketing (`bucket_duration_bins`)ensures that a training batch does not have samples of uneven lengths, as that would lead to wasteful usage of memory by the `<pad>` tokens. OOMptimizer sets batchsizes (`bucket_batch_sizes`) for each bucket ensuring that the training utilizes optimal GPU memory while not running into OOM errors.\n",
"\n",
"\n",
"\n",
"An alternative, if you don't wish to use bucketing, is to set the batchsize explicitly.\n",
"```\n",
"model:\n",
" train_ds:\n",
" use_bucketing: false\n",
" batch_size: 32\n",
"```\n",
"\n",
"Next we add pointers to the script that compute `bucket_duration_bins` and `bucket_batch_sizes`. You will need config for your data, config for your model, and paths to tokenizers.\n",
"\n",
"Let's say `$NEMO_DIR` is path to the installed NeMo library.\n",
"\n",
"First step is to estimate 2D buckets bins using the data config and tokenizers. It takes as arguments, number of buckets, number of sub-buckets (2D in our case), number of utterances used to estimate the bins, lowest and highest duration in seconds, and arguments related to dataset manifest, tokenizers, and prompt format.\n",
"\n",
"```\n",
"python $NEMO_DIR/scripts/speech_recognition/estimate_duration_bins_2d.py \\\n",
" -b 30 \\\n",
" -s 2 \\\n",
" -n 100000 \\\n",
" -l 0.5 -u 40.0 \\\n",
" -t $tokenizer_model1 $tokenizer_model2 $tokenizer_model3 \\\n",
" -a $lang1 $lang2 $lang3 \\\n",
" --lang-field target_lang \\\n",
" --text-field answer \\\n",
" -f canary2 \\\n",
" -p \"[{'role':'user','slots':{'source_lang':'en','target_lang':'en','pnc':'yes','decodercontext':'','emotion':'<|emo:undefined|>','itn':'yes','diarize':'yes','timestamp':'yes'}}]\" \\\n",
" $dataset_config\n",
"```\n",
"\n",
"The next step is to obtain `bucket_batch_sizes` using the estimated `bucket_duration_bins` and model config.\n",
"```\n",
"BUCKETS=$bucket_duration_bins\n",
"\n",
"python $NEMO_DIR/scripts/speech_recognition/oomptimizer.py \\\n",
" -m nemo.collections.asr.models.EncDecMultiTaskModel\\\n",
" -c $config \\\n",
" --no-ddp \\\n",
" -b \"$BUCKETS\"\n",
"\n",
"```\n",
"\n",
"Then you'd update the training config accordingly and launch a training job as shown before.\n",
"\n",
"If you are interested to learn more about these tools, we discuss illustrative examples, technical details, and report efficiency gains in [Zelasko et al.](https://arxiv.org/abs/2503.05931).\n",
"\n",
"Refer to documentation on [2-D bucketing](https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/asr/datasets.html#d-bucketing) and [OOMptimizer](https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/asr/datasets.html#pushing-gpu-utilization-to-the-limits-with-bucketing-and-oomptimizer) for more details."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "75eaOh_LT55a"
},
"source": [
"## Masking loss for prompt tokens\n",
"\n",
"The config has `use_loss_mask_for_prompt` parameter which decides whether or not the training objective includes loss for the decoder prompt tokens.\n",
"\n",
"We noticed that masking prompt loss tokens led to a better performing `canary-180m-flash` model, where as it did not make any noticeable difference for `canary-1b-flash`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "4ArQlMTeUhEO"
},
"outputs": [],
"source": [
"# Load canary model if not previously loaded in this notebook instance\n",
"if 'canary_model' not in locals():\n",
" canary_model = EncDecMultiTaskModel.from_pretrained('nvidia/canary-180m-flash')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "FXMJX8lXU1WP"
},
"outputs": [],
"source": [
"print('prompt loss masking for canary-180m-flash: \\n', canary_model._cfg['use_loss_mask_for_prompt'])"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "umo2f6yI4Y--"
},
"source": [
"# Follow-up reading material and tutorials\n",
"\n",
"1. [SentencePiece](https://arxiv.org/abs/1808.06226) and [concatenated](https://arxiv.org/abs/2306.08753) tokenizer: To learn more about the tokenization process.\n",
"\n",
"\n",
"2. [Tutorial on prompt formatter](https://github.com/NVIDIA/NeMo/blob/main/tutorials/multimodal/Prompt%20Formatter%20Tutorial.ipynb): To learn more about prompt formatter.\n",
"\n",
"2. [Tutorial on multi-task adapters](https://github.com/NVIDIA/NeMo/blob/main/tutorials/asr/asr_adapters/Multi_Task_Adapters.ipynb): If you wish to explore adaptation of `Canary-flash` checkpoints using adapters."
]
}
],
"metadata": {
"colab": {
"provenance": [],
"toc_visible": true
},
"kernelspec": {
"display_name": "ame",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.2"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|