Spaces:
Runtime error
Runtime error
File size: 22,067 Bytes
0558aa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 |
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from dataclasses import dataclass, field, is_dataclass
from typing import List, Optional, Union
import lightning.pytorch as pl
import numpy as np
import torch
from omegaconf import OmegaConf, open_dict
from nemo.collections.asr.models import EncDecCTCModel, EncDecHybridRNNTCTCModel, EncDecRNNTModel
from nemo.collections.asr.models.aed_multitask_models import parse_multitask_prompt
from nemo.collections.asr.modules.conformer_encoder import ConformerChangeConfig
from nemo.collections.asr.parts.submodules.ctc_decoding import CTCDecodingConfig
from nemo.collections.asr.parts.submodules.multitask_decoding import MultiTaskDecoding, MultiTaskDecodingConfig
from nemo.collections.asr.parts.submodules.rnnt_decoding import RNNTDecodingConfig
from nemo.collections.asr.parts.utils.eval_utils import cal_write_wer
from nemo.collections.asr.parts.utils.rnnt_utils import Hypothesis
from nemo.collections.asr.parts.utils.transcribe_utils import (
compute_output_filename,
get_inference_dtype,
prepare_audio_data,
restore_transcription_order,
setup_model,
write_transcription,
)
from nemo.core.config import hydra_runner
from nemo.utils import logging
from nemo.utils.timers import SimpleTimer
"""
Transcribe audio file on a single CPU/GPU. Useful for transcription of moderate amounts of audio data.
# Arguments
model_path: path to .nemo ASR checkpoint
pretrained_name: name of pretrained ASR model (from NGC registry)
audio_dir: path to directory with audio files
dataset_manifest: path to dataset JSON manifest file (in NeMo formats
compute_langs: Bool to request language ID information (if the model supports it)
timestamps: Bool to request greedy time stamp information (if the model supports it) by default None
(Optionally: You can limit the type of timestamp computations using below overrides)
ctc_decoding.ctc_timestamp_type="all" # (default all, can be [all, char, word, segment])
rnnt_decoding.rnnt_timestamp_type="all" # (default all, can be [all, char, word, segment])
output_filename: Output filename where the transcriptions will be written
batch_size: batch size during inference
presort_manifest: sorts the provided manifest by audio length for faster inference (default: True)
cuda: Optional int to enable or disable execution of model on certain CUDA device.
allow_mps: Bool to allow using MPS (Apple Silicon M-series GPU) device if available
amp: Bool to decide if Automatic Mixed Precision should be used during inference
audio_type: Str filetype of the audio. Supported = wav, flac, mp3
overwrite_transcripts: Bool which when set allows repeated transcriptions to overwrite previous results.
ctc_decoding: Decoding sub-config for CTC. Refer to documentation for specific values.
rnnt_decoding: Decoding sub-config for RNNT. Refer to documentation for specific values.
calculate_wer: Bool to decide whether to calculate wer/cer at end of this script
clean_groundtruth_text: Bool to clean groundtruth text
langid: Str used for convert_num_to_words during groundtruth cleaning
use_cer: Bool to use Character Error Rate (CER) or Word Error Rate (WER)
calculate_rtfx: Bool to calculate the RTFx throughput to transcribe the input dataset.
# Usage
ASR model can be specified by either "model_path" or "pretrained_name".
Data for transcription can be defined with either "audio_dir" or "dataset_manifest".
append_pred - optional. Allows you to add more than one prediction to an existing .json
pred_name_postfix - optional. The name you want to be written for the current model
Results are returned in a JSON manifest file.
python transcribe_speech.py \
model_path=null \
pretrained_name=null \
audio_dir="<remove or path to folder of audio files>" \
dataset_manifest="<remove or path to manifest>" \
output_filename="<remove or specify output filename>" \
clean_groundtruth_text=True \
langid='en' \
batch_size=32 \
timestamps=False \
compute_langs=False \
cuda=0 \
amp=True \
append_pred=False \
pred_name_postfix="<remove or use another model name for output filename>"
"""
@dataclass
class ModelChangeConfig:
"""
Sub-config for changes specific to the Conformer Encoder
"""
conformer: ConformerChangeConfig = field(default_factory=ConformerChangeConfig)
@dataclass
class TranscriptionConfig:
"""
Transcription Configuration for audio to text transcription.
"""
# Required configs
model_path: Optional[str] = None # Path to a .nemo file
pretrained_name: Optional[str] = None # Name of a pretrained model
audio_dir: Optional[str] = None # Path to a directory which contains audio files
dataset_manifest: Optional[str] = None # Path to dataset's JSON manifest
channel_selector: Optional[Union[int, str]] = (
None # Used to select a single channel from multichannel audio, or use average across channels
)
audio_key: str = 'audio_filepath' # Used to override the default audio key in dataset_manifest
eval_config_yaml: Optional[str] = None # Path to a yaml file of config of evaluation
presort_manifest: bool = True # Significant inference speedup on short-form data due to padding reduction
# General configs
output_filename: Optional[str] = None
batch_size: int = 32
num_workers: int = 0
append_pred: bool = False # Sets mode of work, if True it will add new field transcriptions.
pred_name_postfix: Optional[str] = None # If you need to use another model name, rather than standard one.
random_seed: Optional[int] = None # seed number going to be used in seed_everything()
# Set to True to output greedy timestamp information (only supported models) and returns full alignment hypotheses
timestamps: Optional[bool] = None
# Set to True to return hypotheses instead of text from the transcribe function
return_hypotheses: bool = False
# Set to True to output language ID information
compute_langs: bool = False
# Set `cuda` to int to define CUDA device. If 'None', will look for CUDA
# device anyway, and do inference on CPU only if CUDA device is not found.
# If `cuda` is a negative number, inference will be on CPU only.
cuda: Optional[int] = None
allow_mps: bool = False # allow to select MPS device (Apple Silicon M-series GPU)
amp: bool = False
amp_dtype: str = "float16" # can be set to "float16" or "bfloat16" when using amp
compute_dtype: Optional[str] = (
None # "float32", "bfloat16" or "float16"; if None (default): bfloat16 if available else float32
)
matmul_precision: str = "high" # Literal["highest", "high", "medium"]
audio_type: str = "wav"
# Recompute model transcription, even if the output folder exists with scores.
overwrite_transcripts: bool = True
# Decoding strategy for CTC models
ctc_decoding: CTCDecodingConfig = field(default_factory=CTCDecodingConfig)
# Decoding strategy for RNNT models
# enable CUDA graphs for transcription
rnnt_decoding: RNNTDecodingConfig = field(default_factory=lambda: RNNTDecodingConfig(fused_batch_size=-1))
# Decoding strategy for AED models
multitask_decoding: MultiTaskDecodingConfig = field(default_factory=MultiTaskDecodingConfig)
# Prompt slots for prompted models, e.g. Canary-1B. Examples of acceptable prompt inputs:
# Implicit single-turn assuming default role='user' (works with Canary-1B)
# +prompt.source_lang=en +prompt.target_lang=es +prompt.task=asr +prompt.pnc=yes
# Explicit single-turn prompt:
# +prompt.role=user +prompt.slots.source_lang=en +prompt.slots.target_lang=es
# +prompt.slots.task=s2t_translation +prompt.slots.pnc=yes
# Explicit multi-turn prompt:
# +prompt.turns='[{role:user,slots:{source_lang:en,target_lang:es,task:asr,pnc:yes}}]'
prompt: dict = field(default_factory=dict)
# decoder type: ctc or rnnt, can be used to switch between CTC and RNNT decoder for Hybrid RNNT/CTC models
decoder_type: Optional[str] = None
# att_context_size can be set for cache-aware streaming models with multiple look-aheads
att_context_size: Optional[list] = None
# Use this for model-specific changes before transcription
model_change: ModelChangeConfig = field(default_factory=ModelChangeConfig)
# Config for word / character error rate calculation
calculate_wer: bool = True
clean_groundtruth_text: bool = False
langid: str = "en" # specify this for convert_num_to_words step in groundtruth cleaning
use_cer: bool = False
# can be set to True to return list of transcriptions instead of the config
# if True, will also skip writing anything to the output file
return_transcriptions: bool = False
# key for groundtruth text in manifest
gt_text_attr_name: str = "text"
gt_lang_attr_name: str = "lang"
extract_nbest: bool = False # Extract n-best hypotheses from the model
calculate_rtfx: bool = False
warmup_steps: int = 0 # by default - no warmup
run_steps: int = 1 # by default - single run
@hydra_runner(config_name="TranscriptionConfig", schema=TranscriptionConfig)
def main(cfg: TranscriptionConfig) -> Union[TranscriptionConfig, List[Hypothesis]]:
"""
Transcribes the input audio and can be used to infer with Encoder-Decoder models.
"""
logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}')
for key in cfg:
cfg[key] = None if cfg[key] == 'None' else cfg[key]
if is_dataclass(cfg):
cfg = OmegaConf.structured(cfg)
if cfg.random_seed:
pl.seed_everything(cfg.random_seed)
if cfg.model_path is None and cfg.pretrained_name is None:
raise ValueError("Both cfg.model_path and cfg.pretrained_name cannot be None!")
if cfg.audio_dir is None and cfg.dataset_manifest is None:
raise ValueError("Both cfg.audio_dir and cfg.dataset_manifest cannot be None!")
# Load augmentor from exteranl yaml file which contains eval info, could be extend to other feature such VAD, P&C
augmentor = None
if cfg.eval_config_yaml:
eval_config = OmegaConf.load(cfg.eval_config_yaml)
augmentor = eval_config.test_ds.get("augmentor")
logging.info(f"Will apply on-the-fly augmentation on samples during transcription: {augmentor} ")
# setup GPU
torch.set_float32_matmul_precision(cfg.matmul_precision)
if cfg.cuda is None:
if torch.cuda.is_available():
device = [0] # use 0th CUDA device
accelerator = 'gpu'
map_location = torch.device('cuda:0')
elif cfg.allow_mps and hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
logging.warning(
"MPS device (Apple Silicon M-series GPU) support is experimental."
" Env variable `PYTORCH_ENABLE_MPS_FALLBACK=1` should be set in most cases to avoid failures."
)
device = [0]
accelerator = 'mps'
map_location = torch.device('mps')
else:
device = 1
accelerator = 'cpu'
map_location = torch.device('cpu')
else:
device = [cfg.cuda]
accelerator = 'gpu'
map_location = torch.device(f'cuda:{cfg.cuda}')
logging.info(f"Inference will be done on device: {map_location}")
asr_model, model_name = setup_model(cfg, map_location)
trainer = pl.Trainer(devices=device, accelerator=accelerator)
asr_model.set_trainer(trainer)
asr_model = asr_model.eval()
if (cfg.compute_dtype is not None and cfg.compute_dtype != "float32") and cfg.amp:
raise ValueError("amp=true is mutually exclusive with a compute_dtype other than float32")
amp_dtype = torch.float16 if cfg.amp_dtype == "float16" else torch.bfloat16
compute_dtype: torch.dtype
if cfg.amp:
# with amp model weights required to be in float32
compute_dtype = torch.float32
else:
compute_dtype = get_inference_dtype(compute_dtype=cfg.compute_dtype, device=map_location)
asr_model.to(compute_dtype)
# we will adjust this flag if the model does not support it
compute_langs = cfg.compute_langs
if cfg.timestamps:
cfg.return_hypotheses = True
# Check whether model and decoder type match
if isinstance(asr_model, EncDecCTCModel):
if cfg.decoder_type and cfg.decoder_type != 'ctc':
raise ValueError('CTC model only support ctc decoding!')
elif isinstance(asr_model, EncDecHybridRNNTCTCModel):
if cfg.decoder_type and cfg.decoder_type not in ['ctc', 'rnnt']:
raise ValueError('Hybrid model only support ctc or rnnt decoding!')
elif isinstance(asr_model, EncDecRNNTModel):
if cfg.decoder_type and cfg.decoder_type != 'rnnt':
raise ValueError('RNNT model only support rnnt decoding!')
if cfg.decoder_type and hasattr(asr_model.encoder, 'set_default_att_context_size'):
asr_model.encoder.set_default_att_context_size(cfg.att_context_size)
# Setup decoding strategy
if hasattr(asr_model, 'change_decoding_strategy') and hasattr(asr_model, 'decoding'):
if isinstance(asr_model.decoding, MultiTaskDecoding):
cfg.multitask_decoding.compute_langs = cfg.compute_langs
if cfg.extract_nbest:
cfg.multitask_decoding.beam.return_best_hypothesis = False
cfg.return_hypotheses = True
asr_model.change_decoding_strategy(cfg.multitask_decoding)
elif cfg.decoder_type is not None:
# TODO: Support compute_langs in CTC eventually
if cfg.compute_langs and cfg.decoder_type == 'ctc':
raise ValueError("CTC models do not support `compute_langs` at the moment")
decoding_cfg = cfg.rnnt_decoding if cfg.decoder_type == 'rnnt' else cfg.ctc_decoding
if cfg.extract_nbest:
decoding_cfg.beam.return_best_hypothesis = False
cfg.return_hypotheses = True
if 'compute_langs' in decoding_cfg:
decoding_cfg.compute_langs = cfg.compute_langs
if hasattr(asr_model, 'cur_decoder'):
asr_model.change_decoding_strategy(decoding_cfg, decoder_type=cfg.decoder_type)
else:
asr_model.change_decoding_strategy(decoding_cfg)
# Check if ctc or rnnt model
elif hasattr(asr_model, 'joint'): # RNNT model
if cfg.extract_nbest:
cfg.rnnt_decoding.beam.return_best_hypothesis = False
cfg.return_hypotheses = True
cfg.rnnt_decoding.fused_batch_size = -1
cfg.rnnt_decoding.compute_langs = cfg.compute_langs
asr_model.change_decoding_strategy(cfg.rnnt_decoding)
else:
if cfg.compute_langs:
raise ValueError("CTC models do not support `compute_langs` at the moment.")
if cfg.extract_nbest:
cfg.ctc_decoding.beam.return_best_hypothesis = False
cfg.return_hypotheses = True
asr_model.change_decoding_strategy(cfg.ctc_decoding)
# Setup decoding config based on model type and decoder_type
with open_dict(cfg):
if isinstance(asr_model, EncDecCTCModel) or (
isinstance(asr_model, EncDecHybridRNNTCTCModel) and cfg.decoder_type == "ctc"
):
cfg.decoding = cfg.ctc_decoding
elif isinstance(asr_model.decoding, MultiTaskDecoding):
cfg.decoding = cfg.multitask_decoding
else:
cfg.decoding = cfg.rnnt_decoding
filepaths, sorted_manifest_path = prepare_audio_data(cfg)
remove_path_after_done = sorted_manifest_path if sorted_manifest_path is not None else None
filepaths = sorted_manifest_path if sorted_manifest_path is not None else filepaths
# Compute output filename
cfg = compute_output_filename(cfg, model_name)
# if transcripts should not be overwritten, and already exists, skip re-transcription step and return
if not cfg.return_transcriptions and not cfg.overwrite_transcripts and os.path.exists(cfg.output_filename):
logging.info(
f"Previous transcripts found at {cfg.output_filename}, and flag `overwrite_transcripts`"
f"is {cfg.overwrite_transcripts}. Returning without re-transcribing text."
)
return cfg
# transcribe audio
if cfg.calculate_rtfx:
total_duration = 0.0
with open(cfg.dataset_manifest, "rt") as fh:
for line in fh:
item = json.loads(line)
if "duration" not in item:
raise ValueError(
f"Requested calculate_rtfx=True, but line {line} in manifest {cfg.dataset_manifest} \
lacks a 'duration' field."
)
total_duration += item["duration"]
if cfg.warmup_steps == 0:
logging.warning(
"RTFx measurement enabled, but warmup_steps=0. "
"At least one warmup step is recommended to measure RTFx"
)
timer = SimpleTimer()
model_measurements = []
with torch.amp.autocast('cuda' if torch.cuda.is_available() else 'cpu', dtype=amp_dtype, enabled=cfg.amp):
with torch.no_grad():
override_cfg = asr_model.get_transcribe_config()
override_cfg.batch_size = cfg.batch_size
override_cfg.num_workers = cfg.num_workers
override_cfg.return_hypotheses = cfg.return_hypotheses
override_cfg.channel_selector = cfg.channel_selector
override_cfg.augmentor = augmentor
override_cfg.text_field = cfg.gt_text_attr_name
override_cfg.lang_field = cfg.gt_lang_attr_name
override_cfg.timestamps = cfg.timestamps
if hasattr(override_cfg, "prompt"):
override_cfg.prompt = parse_multitask_prompt(OmegaConf.to_container(cfg.prompt))
device = next(asr_model.parameters()).device
for run_step in range(cfg.warmup_steps + cfg.run_steps):
if run_step < cfg.warmup_steps:
logging.info(f"Running warmup step {run_step}")
# reset timer
timer.reset()
timer.start(device=device)
# call transcribe
transcriptions = asr_model.transcribe(
audio=filepaths,
override_config=override_cfg,
timestamps=cfg.timestamps,
)
# stop timer, log time
timer.stop(device=device)
logging.info(f"Model time for iteration {run_step}: {timer.total_sec():.3f}")
if run_step >= cfg.warmup_steps:
model_measurements.append(timer.total_sec())
model_measurements_np = np.asarray(model_measurements)
logging.info(
f"Model time avg: {model_measurements_np.mean():.3f}"
+ (f" (std: {model_measurements_np.std():.3f})" if cfg.run_steps > 1 else "")
)
if cfg.dataset_manifest is not None:
logging.info(f"Finished transcribing from manifest file: {cfg.dataset_manifest}")
if cfg.presort_manifest:
transcriptions = restore_transcription_order(cfg.dataset_manifest, transcriptions)
else:
logging.info(f"Finished transcribing {len(filepaths)} files !")
logging.info(f"Writing transcriptions into file: {cfg.output_filename}")
# if transcriptions form a tuple of (best_hypotheses, all_hypotheses)
if type(transcriptions) == tuple and len(transcriptions) == 2:
if cfg.extract_nbest:
# extract all hypotheses if exists
transcriptions = transcriptions[1]
else:
# extract just best hypothesis
transcriptions = transcriptions[0]
if cfg.return_transcriptions:
return transcriptions
# write audio transcriptions
output_filename, pred_text_attr_name = write_transcription(
transcriptions,
cfg,
model_name,
filepaths=filepaths,
compute_langs=compute_langs,
timestamps=cfg.timestamps,
)
logging.info(f"Finished writing predictions to {output_filename}!")
# clean-up
if cfg.presort_manifest is not None:
if remove_path_after_done is not None:
os.unlink(remove_path_after_done)
if cfg.calculate_wer:
output_manifest_w_wer, total_res, _ = cal_write_wer(
pred_manifest=output_filename,
gt_text_attr_name=cfg.gt_text_attr_name,
pred_text_attr_name=pred_text_attr_name,
clean_groundtruth_text=cfg.clean_groundtruth_text,
langid=cfg.langid,
use_cer=cfg.use_cer,
output_filename=None,
)
if output_manifest_w_wer:
logging.info(f"Writing prediction and error rate of each sample to {output_manifest_w_wer}!")
logging.info(f"{total_res}")
if cfg.calculate_rtfx:
rtfx_measurements = total_duration / model_measurements_np
logging.info(
f"Model RTFx on the dataset: {rtfx_measurements.mean():.3f}"
+ (f" (std: {rtfx_measurements.std():.3f})" if cfg.run_steps > 1 else "")
)
return cfg
if __name__ == '__main__':
main() # noqa pylint: disable=no-value-for-parameter
|