Spaces:
Runtime error
Runtime error
Create pipeline.py
Browse files- pipeline.py +438 -0
pipeline.py
ADDED
|
@@ -0,0 +1,438 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from diffusers import FluxControlPipeline, FluxTransformer2DModel
|
| 2 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
from diffusers.image_processor import PipelineImageInput
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
|
| 9 |
+
from diffusers.pipelines.flux.pipeline_flux import calculate_shift, retrieve_timesteps, XLA_AVAILABLE
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class Flex2Pipeline(FluxControlPipeline):
|
| 13 |
+
def __init__(
|
| 14 |
+
self,
|
| 15 |
+
scheduler,
|
| 16 |
+
vae,
|
| 17 |
+
text_encoder,
|
| 18 |
+
tokenizer,
|
| 19 |
+
text_encoder_2,
|
| 20 |
+
tokenizer_2,
|
| 21 |
+
transformer,
|
| 22 |
+
):
|
| 23 |
+
super().__init__(scheduler, vae, text_encoder, tokenizer, text_encoder_2, tokenizer_2, transformer)
|
| 24 |
+
|
| 25 |
+
def check_inputs(
|
| 26 |
+
self,
|
| 27 |
+
prompt,
|
| 28 |
+
prompt_2,
|
| 29 |
+
height,
|
| 30 |
+
width,
|
| 31 |
+
prompt_embeds=None,
|
| 32 |
+
pooled_prompt_embeds=None,
|
| 33 |
+
callback_on_step_end_tensor_inputs=None,
|
| 34 |
+
max_sequence_length=None,
|
| 35 |
+
inpaint_image=None,
|
| 36 |
+
inpaint_mask=None,
|
| 37 |
+
control_image=None,
|
| 38 |
+
):
|
| 39 |
+
super().check_inputs(
|
| 40 |
+
prompt,
|
| 41 |
+
prompt_2,
|
| 42 |
+
height,
|
| 43 |
+
width,
|
| 44 |
+
prompt_embeds=prompt_embeds,
|
| 45 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 46 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
| 47 |
+
max_sequence_length=max_sequence_length,
|
| 48 |
+
)
|
| 49 |
+
if inpaint_image is not None and inpaint_mask is None:
|
| 50 |
+
raise ValueError(
|
| 51 |
+
"If `inpaint_image` is passed, `inpaint_mask` must be passed as well. "
|
| 52 |
+
"Please make sure to pass both `inpaint_image` and `inpaint_mask`."
|
| 53 |
+
)
|
| 54 |
+
if inpaint_mask is not None and inpaint_image is None:
|
| 55 |
+
raise ValueError(
|
| 56 |
+
"If `inpaint_mask` is passed, `inpaint_image` must be passed as well. "
|
| 57 |
+
"Please make sure to pass both `inpaint_image` and `inpaint_mask`."
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
@torch.no_grad()
|
| 61 |
+
def __call__(
|
| 62 |
+
self,
|
| 63 |
+
prompt: Union[str, List[str]] = None,
|
| 64 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
| 65 |
+
inpaint_image: Optional[PipelineImageInput] = None,
|
| 66 |
+
inpaint_mask: Optional[PipelineImageInput] = None,
|
| 67 |
+
control_image: Optional[PipelineImageInput] = None,
|
| 68 |
+
control_strength: Optional[float] = 1.0,
|
| 69 |
+
control_stop: Optional[float] = 1.0,
|
| 70 |
+
height: Optional[int] = None,
|
| 71 |
+
width: Optional[int] = None,
|
| 72 |
+
num_inference_steps: int = 28,
|
| 73 |
+
sigmas: Optional[List[float]] = None,
|
| 74 |
+
guidance_scale: float = 3.5,
|
| 75 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 76 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 77 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 78 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 79 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 80 |
+
output_type: Optional[str] = "pil",
|
| 81 |
+
return_dict: bool = True,
|
| 82 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 83 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
| 84 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
| 85 |
+
max_sequence_length: int = 512,
|
| 86 |
+
**kwargs,
|
| 87 |
+
):
|
| 88 |
+
r"""
|
| 89 |
+
Function invoked when calling the pipeline for generation.
|
| 90 |
+
|
| 91 |
+
Args:
|
| 92 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 93 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
| 94 |
+
instead.
|
| 95 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
| 96 |
+
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
| 97 |
+
will be used instead
|
| 98 |
+
inpaint_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
|
| 99 |
+
`List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
|
| 100 |
+
The image to be inpainted.
|
| 101 |
+
inpaint_mask (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
|
| 102 |
+
`List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
|
| 103 |
+
A black and white mask to be used for inpainting. The white pixels are the areas to be inpainted, while the
|
| 104 |
+
black pixels are the areas to be kept.
|
| 105 |
+
control_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
|
| 106 |
+
`List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
|
| 107 |
+
The control image (line, depth, pose, etc.) to be used for the generation. The control image
|
| 108 |
+
control_strength (`float`, *optional*, defaults to 1.0):
|
| 109 |
+
The strength of the control image. The higher the value, the more the control image will be used to
|
| 110 |
+
guide the generation. The lower the value, the less the control image will be used to guide the
|
| 111 |
+
generation.
|
| 112 |
+
control_stop (`float`, *optional*, defaults to 1.0):
|
| 113 |
+
The percentage of the generation to drop out the control. 0.0 to 1.0. 0.5 mean the control will be dropped
|
| 114 |
+
out at 50% of the generation.
|
| 115 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 116 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
| 117 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 118 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
| 119 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
| 120 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 121 |
+
expense of slower inference.
|
| 122 |
+
sigmas (`List[float]`, *optional*):
|
| 123 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
| 124 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
| 125 |
+
will be used.
|
| 126 |
+
guidance_scale (`float`, *optional*, defaults to 3.5):
|
| 127 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
| 128 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
| 129 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
| 130 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
| 131 |
+
usually at the expense of lower image quality.
|
| 132 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 133 |
+
The number of images to generate per prompt.
|
| 134 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 135 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
| 136 |
+
to make generation deterministic.
|
| 137 |
+
latents (`torch.FloatTensor`, *optional*):
|
| 138 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
| 139 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 140 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
| 141 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 142 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 143 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 144 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 145 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
| 146 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
| 147 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 148 |
+
The output format of the generate image. Choose between
|
| 149 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
| 150 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 151 |
+
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
|
| 152 |
+
joint_attention_kwargs (`dict`, *optional*):
|
| 153 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 154 |
+
`self.processor` in
|
| 155 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 156 |
+
callback_on_step_end (`Callable`, *optional*):
|
| 157 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
| 158 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
| 159 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
| 160 |
+
`callback_on_step_end_tensor_inputs`.
|
| 161 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
| 162 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
| 163 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
| 164 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
| 165 |
+
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
|
| 166 |
+
|
| 167 |
+
Examples:
|
| 168 |
+
|
| 169 |
+
Returns:
|
| 170 |
+
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
|
| 171 |
+
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
|
| 172 |
+
images.
|
| 173 |
+
"""
|
| 174 |
+
|
| 175 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
| 176 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
| 177 |
+
|
| 178 |
+
# 1. Check inputs. Raise error if not correct
|
| 179 |
+
self.check_inputs(
|
| 180 |
+
prompt,
|
| 181 |
+
prompt_2,
|
| 182 |
+
height,
|
| 183 |
+
width,
|
| 184 |
+
prompt_embeds=prompt_embeds,
|
| 185 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 186 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
| 187 |
+
max_sequence_length=max_sequence_length,
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
self._guidance_scale = guidance_scale
|
| 191 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
| 192 |
+
self._interrupt = False
|
| 193 |
+
|
| 194 |
+
# 2. Define call parameters
|
| 195 |
+
if prompt is not None and isinstance(prompt, str):
|
| 196 |
+
batch_size = 1
|
| 197 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 198 |
+
batch_size = len(prompt)
|
| 199 |
+
else:
|
| 200 |
+
batch_size = prompt_embeds.shape[0]
|
| 201 |
+
|
| 202 |
+
device = self._execution_device
|
| 203 |
+
|
| 204 |
+
# 3. Prepare text embeddings
|
| 205 |
+
lora_scale = (
|
| 206 |
+
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
| 207 |
+
)
|
| 208 |
+
(
|
| 209 |
+
prompt_embeds,
|
| 210 |
+
pooled_prompt_embeds,
|
| 211 |
+
text_ids,
|
| 212 |
+
) = self.encode_prompt(
|
| 213 |
+
prompt=prompt,
|
| 214 |
+
prompt_2=prompt_2,
|
| 215 |
+
prompt_embeds=prompt_embeds,
|
| 216 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 217 |
+
device=device,
|
| 218 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 219 |
+
max_sequence_length=max_sequence_length,
|
| 220 |
+
lora_scale=lora_scale,
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
# 4. Prepare latent variables
|
| 224 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
| 225 |
+
|
| 226 |
+
# only prepare latents for non controls
|
| 227 |
+
# (16 + 1 + 16 )
|
| 228 |
+
num_control_channels = 33
|
| 229 |
+
num_channels_latents = num_channels_latents - num_control_channels
|
| 230 |
+
|
| 231 |
+
control_latents = None
|
| 232 |
+
inpaint_latents = None
|
| 233 |
+
inpaint_latents_mask = None
|
| 234 |
+
|
| 235 |
+
latent_height = height // self.vae_scale_factor
|
| 236 |
+
latent_width = width // self.vae_scale_factor
|
| 237 |
+
|
| 238 |
+
# process the control and inpaint channels
|
| 239 |
+
|
| 240 |
+
if control_image is None:
|
| 241 |
+
control_latents = torch.zeros(
|
| 242 |
+
batch_size * num_images_per_prompt,
|
| 243 |
+
3,
|
| 244 |
+
latent_height,
|
| 245 |
+
latent_width,
|
| 246 |
+
device=device,
|
| 247 |
+
dtype=self.vae.dtype,
|
| 248 |
+
)
|
| 249 |
+
else:
|
| 250 |
+
control_image = self.prepare_image(
|
| 251 |
+
image=control_image,
|
| 252 |
+
width=width,
|
| 253 |
+
height=height,
|
| 254 |
+
batch_size=batch_size * num_images_per_prompt,
|
| 255 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 256 |
+
device=device,
|
| 257 |
+
dtype=self.vae.dtype,
|
| 258 |
+
)
|
| 259 |
+
control_image = self.vae.encode(control_image).latent_dist.sample(generator=generator)
|
| 260 |
+
control_latents = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
| 261 |
+
|
| 262 |
+
# apply control strength
|
| 263 |
+
control_latents = control_latents * control_strength
|
| 264 |
+
|
| 265 |
+
if inpaint_image is None and inpaint_mask is None:
|
| 266 |
+
inpaint_latents = torch.zeros(
|
| 267 |
+
batch_size * num_images_per_prompt,
|
| 268 |
+
3,
|
| 269 |
+
latent_height,
|
| 270 |
+
latent_width,
|
| 271 |
+
device=device,
|
| 272 |
+
dtype=self.vae.dtype,
|
| 273 |
+
)
|
| 274 |
+
inpaint_latents_mask = torch.ones(
|
| 275 |
+
batch_size * num_images_per_prompt,
|
| 276 |
+
1,
|
| 277 |
+
latent_height,
|
| 278 |
+
latent_width,
|
| 279 |
+
device=device,
|
| 280 |
+
dtype=self.vae.dtype,
|
| 281 |
+
)
|
| 282 |
+
else:
|
| 283 |
+
inpaint_image = self.prepare_image(
|
| 284 |
+
image=inpaint_image,
|
| 285 |
+
width=width,
|
| 286 |
+
height=height,
|
| 287 |
+
batch_size=batch_size * num_images_per_prompt,
|
| 288 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 289 |
+
device=device,
|
| 290 |
+
dtype=self.vae.dtype,
|
| 291 |
+
)
|
| 292 |
+
inpaint_image = self.vae.encode(inpaint_image).latent_dist.sample(generator=generator)
|
| 293 |
+
inpaint_latents = (inpaint_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
| 294 |
+
height_inpaint_image, width_inpaint_image = control_image.shape[2:]
|
| 295 |
+
|
| 296 |
+
inpaint_mask = self.prepare_image(
|
| 297 |
+
image=inpaint_mask,
|
| 298 |
+
width=width,
|
| 299 |
+
height=height,
|
| 300 |
+
batch_size=batch_size * num_images_per_prompt,
|
| 301 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 302 |
+
device=device,
|
| 303 |
+
dtype=self.vae.dtype,
|
| 304 |
+
)
|
| 305 |
+
# mask is 3 ch -1 to 1. make it 1ch, 0 to 1
|
| 306 |
+
inpaint_mask = inpaint_mask[:, 0:1, :, :] * 0.5 + 0.5
|
| 307 |
+
# resize to match height_inpaint_image and width_inpaint_image
|
| 308 |
+
inpaint_latents_mask = F.interpolate(inpaint_mask, size=(height_inpaint_image, width_inpaint_image), mode="bilinear", align_corners=False)
|
| 309 |
+
|
| 310 |
+
# apply inverted mask to inpaint latents
|
| 311 |
+
inpaint_latents = inpaint_latents * (1 - inpaint_latents_mask)
|
| 312 |
+
|
| 313 |
+
# concat the latent controls on the channel dimension every step
|
| 314 |
+
latent_controls = torch.cat([inpaint_latents, inpaint_latents_mask, control_latents], dim=1)
|
| 315 |
+
latent_no_controls = torch.cat([inpaint_latents, inpaint_latents_mask, torch.zeros_like(control_latents)], dim=1)
|
| 316 |
+
|
| 317 |
+
# pack the controls
|
| 318 |
+
height_latent_controls, width_latent_controls = latent_controls.shape[2:]
|
| 319 |
+
packed_latent_controls = self._pack_latents(
|
| 320 |
+
latent_controls,
|
| 321 |
+
batch_size * num_images_per_prompt,
|
| 322 |
+
num_control_channels,
|
| 323 |
+
height_latent_controls,
|
| 324 |
+
width_latent_controls,
|
| 325 |
+
)
|
| 326 |
+
packed_latent_no_controls = self._pack_latents(
|
| 327 |
+
latent_no_controls,
|
| 328 |
+
batch_size * num_images_per_prompt,
|
| 329 |
+
num_control_channels,
|
| 330 |
+
height_latent_controls,
|
| 331 |
+
width_latent_controls,
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
latents, latent_image_ids = self.prepare_latents(
|
| 335 |
+
batch_size * num_images_per_prompt,
|
| 336 |
+
num_channels_latents,
|
| 337 |
+
height,
|
| 338 |
+
width,
|
| 339 |
+
prompt_embeds.dtype,
|
| 340 |
+
device,
|
| 341 |
+
generator,
|
| 342 |
+
latents,
|
| 343 |
+
)
|
| 344 |
+
|
| 345 |
+
# 5. Prepare timesteps
|
| 346 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
|
| 347 |
+
image_seq_len = latents.shape[1]
|
| 348 |
+
mu = calculate_shift(
|
| 349 |
+
image_seq_len,
|
| 350 |
+
self.scheduler.config.get("base_image_seq_len", 256),
|
| 351 |
+
self.scheduler.config.get("max_image_seq_len", 4096),
|
| 352 |
+
self.scheduler.config.get("base_shift", 0.5),
|
| 353 |
+
self.scheduler.config.get("max_shift", 1.15),
|
| 354 |
+
)
|
| 355 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
| 356 |
+
self.scheduler,
|
| 357 |
+
num_inference_steps,
|
| 358 |
+
device,
|
| 359 |
+
sigmas=sigmas,
|
| 360 |
+
mu=mu,
|
| 361 |
+
)
|
| 362 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
| 363 |
+
self._num_timesteps = len(timesteps)
|
| 364 |
+
|
| 365 |
+
# handle guidance
|
| 366 |
+
if self.transformer.config.guidance_embeds:
|
| 367 |
+
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
|
| 368 |
+
guidance = guidance.expand(latents.shape[0])
|
| 369 |
+
else:
|
| 370 |
+
guidance = None
|
| 371 |
+
|
| 372 |
+
control_cutoff = int(len(timesteps) * control_stop)
|
| 373 |
+
|
| 374 |
+
# 6. Denoising loop
|
| 375 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 376 |
+
for i, t in enumerate(timesteps):
|
| 377 |
+
if self.interrupt:
|
| 378 |
+
continue
|
| 379 |
+
|
| 380 |
+
control_latents = packed_latent_controls if i < control_cutoff else packed_latent_no_controls
|
| 381 |
+
|
| 382 |
+
latent_model_input = torch.cat([latents, control_latents], dim=2)
|
| 383 |
+
|
| 384 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 385 |
+
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
| 386 |
+
|
| 387 |
+
noise_pred = self.transformer(
|
| 388 |
+
hidden_states=latent_model_input,
|
| 389 |
+
timestep=timestep / 1000,
|
| 390 |
+
guidance=guidance,
|
| 391 |
+
pooled_projections=pooled_prompt_embeds,
|
| 392 |
+
encoder_hidden_states=prompt_embeds,
|
| 393 |
+
txt_ids=text_ids,
|
| 394 |
+
img_ids=latent_image_ids,
|
| 395 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
| 396 |
+
return_dict=False,
|
| 397 |
+
)[0]
|
| 398 |
+
|
| 399 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 400 |
+
latents_dtype = latents.dtype
|
| 401 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
| 402 |
+
|
| 403 |
+
if latents.dtype != latents_dtype:
|
| 404 |
+
if torch.backends.mps.is_available():
|
| 405 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
| 406 |
+
latents = latents.to(latents_dtype)
|
| 407 |
+
|
| 408 |
+
if callback_on_step_end is not None:
|
| 409 |
+
callback_kwargs = {}
|
| 410 |
+
for k in callback_on_step_end_tensor_inputs:
|
| 411 |
+
callback_kwargs[k] = locals()[k]
|
| 412 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
| 413 |
+
|
| 414 |
+
latents = callback_outputs.pop("latents", latents)
|
| 415 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
| 416 |
+
|
| 417 |
+
# call the callback, if provided
|
| 418 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 419 |
+
progress_bar.update()
|
| 420 |
+
|
| 421 |
+
if XLA_AVAILABLE:
|
| 422 |
+
xm.mark_step()
|
| 423 |
+
|
| 424 |
+
if output_type == "latent":
|
| 425 |
+
image = latents
|
| 426 |
+
else:
|
| 427 |
+
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
| 428 |
+
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
| 429 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
| 430 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
| 431 |
+
|
| 432 |
+
# Offload all models
|
| 433 |
+
self.maybe_free_model_hooks()
|
| 434 |
+
|
| 435 |
+
if not return_dict:
|
| 436 |
+
return (image,)
|
| 437 |
+
|
| 438 |
+
return FluxPipelineOutput(images=image)
|