Spaces:
Runtime error
Runtime error
revert
Browse files
app.py
CHANGED
|
@@ -2,20 +2,18 @@ import os
|
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
import torch
|
| 5 |
-
from colpali_engine.models.paligemma_colbert_architecture import ColPali
|
| 6 |
-
from colpali_engine.trainer.retrieval_evaluator import CustomEvaluator
|
| 7 |
-
from colpali_engine.utils.colpali_processing_utils import (
|
| 8 |
-
process_images,
|
| 9 |
-
process_queries,
|
| 10 |
-
)
|
| 11 |
from pdf2image import convert_from_path
|
| 12 |
from PIL import Image
|
| 13 |
from torch.utils.data import DataLoader
|
| 14 |
from tqdm import tqdm
|
| 15 |
from transformers import AutoProcessor
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
def search(query: str, ds, images
|
| 19 |
qs = []
|
| 20 |
with torch.no_grad():
|
| 21 |
batch_query = process_queries(processor, [query], mock_image)
|
|
@@ -23,27 +21,19 @@ def search(query: str, ds, images, k):
|
|
| 23 |
embeddings_query = model(**batch_query)
|
| 24 |
qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
|
| 25 |
|
|
|
|
| 26 |
retriever_evaluator = CustomEvaluator(is_multi_vector=True)
|
| 27 |
scores = retriever_evaluator.evaluate(qs, ds)
|
|
|
|
|
|
|
| 28 |
|
| 29 |
-
top_k_indices = scores.argsort(axis=1)[0][-k:][::-1]
|
| 30 |
|
| 31 |
-
|
| 32 |
-
for idx in top_k_indices:
|
| 33 |
-
results.append((images[idx], f"Page {idx}"))
|
| 34 |
-
|
| 35 |
-
return results
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
def index(files, ds):
|
| 39 |
"""Example script to run inference with ColPali"""
|
| 40 |
images = []
|
| 41 |
-
for f in
|
| 42 |
images.extend(convert_from_path(f))
|
| 43 |
|
| 44 |
-
if len(images) >= 150:
|
| 45 |
-
raise gr.Error("The number of images in the dataset should be less than 150.")
|
| 46 |
-
|
| 47 |
# run inference - docs
|
| 48 |
dataloader = DataLoader(
|
| 49 |
images,
|
|
@@ -58,50 +48,41 @@ def index(files, ds):
|
|
| 58 |
ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
|
| 59 |
return f"Uploaded and converted {len(images)} pages", ds, images
|
| 60 |
|
| 61 |
-
|
|
|
|
| 62 |
# Load model
|
| 63 |
model_name = "vidore/colpali"
|
| 64 |
token = os.environ.get("HF_TOKEN")
|
| 65 |
model = ColPali.from_pretrained(
|
| 66 |
-
"google/paligemma-3b-mix-448", torch_dtype=torch.bfloat16, device_map="cuda", token
|
| 67 |
).eval()
|
| 68 |
-
|
| 69 |
model.load_adapter(model_name)
|
| 70 |
-
processor = AutoProcessor.from_pretrained(model_name,
|
| 71 |
-
|
| 72 |
device = model.device
|
| 73 |
-
|
| 74 |
mock_image = Image.new("RGB", (448, 448), (255, 255, 255))
|
| 75 |
|
| 76 |
-
with gr.Blocks(
|
| 77 |
-
gr.Markdown("# ColPali: Efficient Document Retrieval with Vision Language Models
|
| 78 |
-
gr.Markdown("
|
| 79 |
-
|
| 80 |
-
ColPali is model implemented from the [ColPali paper](https://arxiv.org/abs/2407.01449).
|
| 81 |
|
| 82 |
-
|
| 83 |
-
""
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
file = gr.File(file_types=["pdf"], file_count="multiple", label="Upload PDFs")
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
embeds = gr.State(value=[])
|
| 92 |
-
imgs = gr.State(value=[])
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
|
|
|
| 98 |
|
| 99 |
-
|
| 100 |
-
search_button = gr.Button("π Search", variant="primary")
|
| 101 |
-
output_gallery = gr.Gallery(label="Retrieved Documents", height=600, show_label=True)
|
| 102 |
|
| 103 |
-
convert_button.click(index, inputs=[file, embeds], outputs=[message, embeds, imgs])
|
| 104 |
-
search_button.click(search, inputs=[query, embeds, imgs, k], outputs=[output_gallery])
|
| 105 |
|
| 106 |
if __name__ == "__main__":
|
| 107 |
-
demo.queue(max_size=10).launch(debug=True
|
|
|
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
from pdf2image import convert_from_path
|
| 6 |
from PIL import Image
|
| 7 |
from torch.utils.data import DataLoader
|
| 8 |
from tqdm import tqdm
|
| 9 |
from transformers import AutoProcessor
|
| 10 |
|
| 11 |
+
from colpali_engine.models.paligemma_colbert_architecture import ColPali
|
| 12 |
+
from colpali_engine.trainer.retrieval_evaluator import CustomEvaluator
|
| 13 |
+
from colpali_engine.utils.colpali_processing_utils import process_images, process_queries
|
| 14 |
+
|
| 15 |
|
| 16 |
+
def search(query: str, ds, images):
|
| 17 |
qs = []
|
| 18 |
with torch.no_grad():
|
| 19 |
batch_query = process_queries(processor, [query], mock_image)
|
|
|
|
| 21 |
embeddings_query = model(**batch_query)
|
| 22 |
qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
|
| 23 |
|
| 24 |
+
# run evaluation
|
| 25 |
retriever_evaluator = CustomEvaluator(is_multi_vector=True)
|
| 26 |
scores = retriever_evaluator.evaluate(qs, ds)
|
| 27 |
+
best_page = int(scores.argmax(axis=1).item())
|
| 28 |
+
return f"The most relevant page is {best_page}", images[best_page]
|
| 29 |
|
|
|
|
| 30 |
|
| 31 |
+
def index(file, ds):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
"""Example script to run inference with ColPali"""
|
| 33 |
images = []
|
| 34 |
+
for f in file:
|
| 35 |
images.extend(convert_from_path(f))
|
| 36 |
|
|
|
|
|
|
|
|
|
|
| 37 |
# run inference - docs
|
| 38 |
dataloader = DataLoader(
|
| 39 |
images,
|
|
|
|
| 48 |
ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
|
| 49 |
return f"Uploaded and converted {len(images)} pages", ds, images
|
| 50 |
|
| 51 |
+
|
| 52 |
+
COLORS = ["#4285f4", "#db4437", "#f4b400", "#0f9d58", "#e48ef1"]
|
| 53 |
# Load model
|
| 54 |
model_name = "vidore/colpali"
|
| 55 |
token = os.environ.get("HF_TOKEN")
|
| 56 |
model = ColPali.from_pretrained(
|
| 57 |
+
"google/paligemma-3b-mix-448", torch_dtype=torch.bfloat16, device_map="cuda", token=token
|
| 58 |
).eval()
|
|
|
|
| 59 |
model.load_adapter(model_name)
|
| 60 |
+
processor = AutoProcessor.from_pretrained(model_name, token=token)
|
|
|
|
| 61 |
device = model.device
|
|
|
|
| 62 |
mock_image = Image.new("RGB", (448, 448), (255, 255, 255))
|
| 63 |
|
| 64 |
+
with gr.Blocks() as demo:
|
| 65 |
+
gr.Markdown("# ColPali: Efficient Document Retrieval with Vision Language Models ππ")
|
| 66 |
+
gr.Markdown("## 1οΈβ£ Upload PDFs")
|
| 67 |
+
file = gr.File(file_types=["pdf"], file_count="multiple")
|
|
|
|
| 68 |
|
| 69 |
+
gr.Markdown("## 2οΈβ£ Convert the PDFs and upload")
|
| 70 |
+
convert_button = gr.Button("π Convert and upload")
|
| 71 |
+
message = gr.Textbox("Files not yet uploaded")
|
| 72 |
+
embeds = gr.State(value=[])
|
| 73 |
+
imgs = gr.State(value=[])
|
|
|
|
| 74 |
|
| 75 |
+
# Define the actions
|
| 76 |
+
convert_button.click(index, inputs=[file, embeds], outputs=[message, embeds, imgs])
|
|
|
|
|
|
|
| 77 |
|
| 78 |
+
gr.Markdown("## 3οΈβ£ Search")
|
| 79 |
+
query = gr.Textbox(placeholder="Enter your query here")
|
| 80 |
+
search_button = gr.Button("π Search")
|
| 81 |
+
message2 = gr.Textbox("Query not yet set")
|
| 82 |
+
output_img = gr.Image()
|
| 83 |
|
| 84 |
+
search_button.click(search, inputs=[query, embeds, imgs], outputs=[message2, output_img])
|
|
|
|
|
|
|
| 85 |
|
|
|
|
|
|
|
| 86 |
|
| 87 |
if __name__ == "__main__":
|
| 88 |
+
demo.queue(max_size=10).launch(debug=True)
|