import logging from sklearn.linear_model import SGDClassifier import uvicorn from fastapi import FastAPI app = FastAPI() def predict(input_text: str): data = [[ord(c) for c in input_text]] # Convert the string to a list of ASCII values model = train(data) # Make a prediction prediction = model.predict([[ord(c) for c in 'abc']]) # Convert the input string to a list of ASCII values return {"prediction": prediction} def train(X): model = SGDClassifier() model.fit(X, X) # In this case, we are using the input data as the labels return model # Here you can do things such as load your models @app.get("/") def read_root(input_text): logging.info("Received request with input_text: %s", input_text) try: result = predict(input_text) logging.info("Prediction made: %s", result) return result except Exception as e: logging.error("An error occured: %s", e) return {"error": str(e)}