Spaces:
Runtime error
Runtime error
streetyogi
commited on
Commit
·
d9bb831
1
Parent(s):
077a630
Update inference_server.py
Browse files- inference_server.py +20 -8
inference_server.py
CHANGED
@@ -5,24 +5,36 @@ from sklearn.pipeline import Pipeline
|
|
5 |
from sklearn.naive_bayes import MultinomialNB
|
6 |
import uvicorn
|
7 |
from fastapi import FastAPI
|
|
|
8 |
|
9 |
app = FastAPI()
|
10 |
|
11 |
strings = set() # Set to store all input strings
|
12 |
|
|
|
|
|
|
|
13 |
def predict(input_text: str):
|
14 |
# Add the new input string to the set of strings
|
15 |
strings.add(input_text)
|
16 |
-
#
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
]
|
21 |
-
model.fit(list(strings), list(strings))
|
22 |
|
23 |
-
#
|
24 |
-
|
|
|
|
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
return {"prediction": prediction, "num_strings": len(strings)}
|
27 |
|
28 |
# Here you can do things such as load your models
|
|
|
5 |
from sklearn.naive_bayes import MultinomialNB
|
6 |
import uvicorn
|
7 |
from fastapi import FastAPI
|
8 |
+
import transformers
|
9 |
|
10 |
app = FastAPI()
|
11 |
|
12 |
strings = set() # Set to store all input strings
|
13 |
|
14 |
+
# Load the BERT LM and set it to eval mode
|
15 |
+
model = transformers.BertModel.from_pretrained('bert-base-cased')
|
16 |
+
model.eval()
|
17 |
def predict(input_text: str):
|
18 |
# Add the new input string to the set of strings
|
19 |
strings.add(input_text)
|
20 |
+
# Convert the input strings to input tensors for the BERT LM
|
21 |
+
input_tensors =
|
22 |
+
transformers.BertTokenizer.from_pretrained('bert-base-cased').batch_encode_plus(list(strings), max_length=512,
|
23 |
+
pad_to_max_length=True, return_tensors='pt')
|
24 |
+
input_ids = input_tensors['input_ids']
|
|
|
25 |
|
26 |
+
# Use the BERT LM to generate for all input strings
|
27 |
+
with torch.no_grad():
|
28 |
+
outputs = model(input_ids)
|
29 |
+
logits = output[0]
|
30 |
|
31 |
+
# Find the input string that is most similar to the new input string, according to the BERT LM
|
32 |
+
similarity_scores =
|
33 |
+
torch.nn.functional.csine_similarity(logits[:, 0, :],
|
34 |
+
logits[:, -1, :], dim=1)
|
35 |
+
_, prediction_index = torch.max(similarity_scores, dim=0)
|
36 |
+
prediction = list(strings)[prediction_index]
|
37 |
+
|
38 |
return {"prediction": prediction, "num_strings": len(strings)}
|
39 |
|
40 |
# Here you can do things such as load your models
|