me / inference_server.py
streetyogi's picture
Update inference_server.py
3e848f0
import pickle
import logging
import uvicorn
from fastapi import FastAPI
import transformers
import torch
import fcntl
app = FastAPI()
strings = set() # Set to store all input strings
# Load the BERT LM and set it to eval mode
model = transformers.BertModel.from_pretrained('bert-base-cased')
model.eval()
# Load the BERT tokenizer
tokenizer = transformers.BertTokenizer.from_pretrained('bert-base-cased')
def predict(input_text: str):
# Open the file in append mode
with open('strings.txt','a') as f:
# Lock the file
fcntl.flock(f, fcntl.LOCK_EX)
# Add the new input string to the file
f.write(input_text + '\n')
# Unlock the file
fcntl.flock(f, fcntl.LOCK_UN)
# Read all the strings from the file
with open('strings.txt', 'r') as f:
strings = set(f.read().splitlines())
# Convert the input strings to input tensors for the BERT LM
input_tensors = tokenizer.batch_encode_plus(list(strings), max_length=512,
pad_to_max_length=True, return_tensors='pt')
input_ids = input_tensors['input_ids']
# Use the BERT LM to generate for all input strings
with torch.no_grad():
outputs = model(input_ids)
logits = outputs[0]
# Find the input string that is most similar to the new input string, according to the BERT LM
similarity_scores = torch.nn.functional.cosine_similarity(logits[:, 0, :],
logits[:, -1, :], dim=1)
_, prediction_index = torch.max(similarity_scores, dim=0)
prediction = list(strings)[prediction_index]
return {"prediction": prediction, "num_strings": len(strings)}
# Here you can do things such as load your models
@app.get("/")
def read_root(input_text):
logging.info("Received request with input_text: %s", input_text)
try:
result = predict(input_text)
logging.info("Prediction made: %s", result)
return result
except Exception as e:
logging.error("An error occured: %s", e)
return {"error": str(e)}