Spaces:
Runtime error
Runtime error
import pickle | |
import logging | |
import uvicorn | |
from fastapi import FastAPI | |
import transformers | |
app = FastAPI() | |
strings = set() # Set to store all input strings | |
# Load the BERT LM and set it to eval mode | |
model = transformers.BertModel.from_pretrained('bert-base-cased') | |
model.eval() | |
def predict(input_text: str): | |
# Add the new input string to the set of strings | |
strings.add(input_text) | |
# Convert the input strings to input tensors for the BERT LM | |
input_tensors = transformers.BertTokenizer.from_pretrained('bert-base-cased').batch_encode_plus(list(strings), max_length=512, | |
pad_to_max_length=True, return_tensors='pt') | |
input_ids = input_tensors['input_ids'] | |
# Use the BERT LM to generate for all input strings | |
with torch.no_grad(): | |
outputs = model(input_ids) | |
logits = output[0] | |
# Find the input string that is most similar to the new input string, according to the BERT LM | |
similarity_scores = torch.nn.functional.csine_similarity(logits[:, 0, :], | |
logits[:, -1, :], dim=1) | |
_, prediction_index = torch.max(similarity_scores, dim=0) | |
prediction = list(strings)[prediction_index] | |
return {"prediction": prediction, "num_strings": len(strings)} | |
# Here you can do things such as load your models | |
def read_root(input_text): | |
logging.info("Received request with input_text: %s", input_text) | |
try: | |
result = predict(input_text) | |
logging.info("Prediction made: %s", result) | |
return result | |
except Exception as e: | |
logging.error("An error occured: %s", e) | |
return {"error": str(e)} |