Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# let's import the libraries
|
| 2 |
+
from sentence_transformers import util
|
| 3 |
+
from sentence_transformers import CrossEncoder
|
| 4 |
+
from sentence_transformers import SentenceTransformer
|
| 5 |
+
import time
|
| 6 |
+
import sys
|
| 7 |
+
import os
|
| 8 |
+
import torch
|
| 9 |
+
import en_core_web_sm
|
| 10 |
+
from email import header
|
| 11 |
+
import streamlit as st
|
| 12 |
+
import pandas as pd
|
| 13 |
+
import numpy as np
|
| 14 |
+
import pickle
|
| 15 |
+
import spacy
|
| 16 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 17 |
+
from datasets import load_dataset
|
| 18 |
+
import io
|
| 19 |
+
import netrc
|
| 20 |
+
from tqdm import tqdm
|
| 21 |
+
tqdm.pandas()
|
| 22 |
+
|
| 23 |
+
# Load the English STSB dataset
|
| 24 |
+
stsb_dataset = load_dataset('stsb_multi_mt', 'en')
|
| 25 |
+
stsb_train = pd.DataFrame(stsb_dataset['train'])
|
| 26 |
+
stsb_test = pd.DataFrame(stsb_dataset['test'])
|
| 27 |
+
|
| 28 |
+
# let's create helper functions
|
| 29 |
+
nlp = spacy.load("en_core_web_sm")
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def text_processing(sentence):
|
| 33 |
+
sentence = [token.lemma_.lower()
|
| 34 |
+
for token in nlp(sentence)
|
| 35 |
+
if token.is_alpha and not token.is_stop]
|
| 36 |
+
return sentence
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def cos_sim(sentence1_emb, sentence2_emb):
|
| 40 |
+
cos_sim = cosine_similarity(sentence1_emb, sentence2_emb)
|
| 41 |
+
return np.diag(cos_sim)
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
# let's read the csv file
|
| 45 |
+
data = (pd.read_csv("SBERT_data.csv")).drop(['Unnamed: 0'], axis=1)
|
| 46 |
+
|
| 47 |
+
prompt = "charles"
|
| 48 |
+
data['prompt'] = prompt
|
| 49 |
+
data.rename(columns={'target_text': 'sentence2',
|
| 50 |
+
'prompt': 'sentence1'}, inplace=True)
|
| 51 |
+
data['sentence2'] = data['sentence2'].astype('str')
|
| 52 |
+
data['sentence1'] = data['sentence1'].astype('str')
|
| 53 |
+
|
| 54 |
+
XpathFinder = CrossEncoder("cross-encoder/stsb-roberta-base")
|
| 55 |
+
sentence_pairs = []
|
| 56 |
+
for sentence1, sentence2 in zip(data['sentence1'], data['sentence2']):
|
| 57 |
+
sentence_pairs.append([sentence1, sentence2])
|
| 58 |
+
|
| 59 |
+
data['SBERT CrossEncoder_Score'] = XpathFinder.predict(
|
| 60 |
+
sentence_pairs, show_progress_bar=True)
|
| 61 |
+
|
| 62 |
+
# sorting the values
|
| 63 |
+
data.sort_values(by=['SBERT CrossEncoder_Score'], ascending=False)
|
| 64 |
+
|
| 65 |
+
loaded_model = XpathFinder
|
| 66 |
+
|
| 67 |
+
# Containers
|
| 68 |
+
header_container = st.container()
|
| 69 |
+
mod_container = st.container()
|
| 70 |
+
|
| 71 |
+
# Header
|
| 72 |
+
with header_container:
|
| 73 |
+
|
| 74 |
+
# different levels of text you can include in your app
|
| 75 |
+
st.title("Xpath Finder App")
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
# model container
|
| 79 |
+
with mod_container:
|
| 80 |
+
|
| 81 |
+
# collecting input from user
|
| 82 |
+
prompt = st.text_input("Enter your description below ...")
|
| 83 |
+
|
| 84 |
+
# Loading e data
|
| 85 |
+
data = (pd.read_csv("SBERT_data.csv")
|
| 86 |
+
).drop(['Unnamed: 0'], axis=1)
|
| 87 |
+
|
| 88 |
+
data['prompt'] = prompt
|
| 89 |
+
data.rename(columns={'target_text': 'sentence2',
|
| 90 |
+
'prompt': 'sentence1'}, inplace=True)
|
| 91 |
+
data['sentence2'] = data['sentence2'].astype('str')
|
| 92 |
+
data['sentence1'] = data['sentence1'].astype('str')
|
| 93 |
+
|
| 94 |
+
# let's pass the input to the loaded_model with torch compiled with cuda
|
| 95 |
+
if prompt:
|
| 96 |
+
# let's get the result
|
| 97 |
+
simscore = loaded_model.predict([prompt])
|
| 98 |
+
|
| 99 |
+
from sentence_transformers import CrossEncoder
|
| 100 |
+
loaded_model = CrossEncoder("cross-encoder/stsb-roberta-base")
|
| 101 |
+
sentence_pairs = []
|
| 102 |
+
for sentence1, sentence2 in zip(data['sentence1'], data['sentence2']):
|
| 103 |
+
sentence_pairs.append([sentence1, sentence2])
|
| 104 |
+
|
| 105 |
+
# sorting the df to get highest scoring xpath_container
|
| 106 |
+
data['SBERT CrossEncoder_Score'] = loaded_model.predict(sentence_pairs)
|
| 107 |
+
most_acc = data.head(5)
|
| 108 |
+
# predictions
|
| 109 |
+
st.write("Highest Similarity score: ", simscore)
|
| 110 |
+
st.text("Is this one of these the Xpath you're looking for?")
|
| 111 |
+
st.write(st.write(most_acc["input_text"]))
|