""" This module provides a Streamlit web application for classifying Glassdoor reviews into sentiment categories using a fine-tuned BERT model. """ import numpy as np import streamlit as st import torch from transformers import BertTokenizer from config import (BERTIMBAU_FINETUNED_MODEL, BERTIMBAU_MODEL, SENTIMENT_MAPPING) from glassdoor_reviews_classifier import GlassdoorReviewsClassifier @st.cache_resource def load_model(): """ Loads the fine-tuned BERT model for sentiment classification. Returns: model (GlassdoorReviewsClassifier): The loaded model. """ try: model = GlassdoorReviewsClassifier().to(device) model.load_state_dict( torch.load(BERTIMBAU_FINETUNED_MODEL, map_location=device) ) model.eval() return model except Exception as e: st.error(f"Error loading model: {e}") return None @st.cache_resource def load_tokenizer(): """ Loads the BERT tokenizer. Returns: tokenizer (BertTokenizer): The loaded tokenizer. """ return BertTokenizer.from_pretrained(BERTIMBAU_MODEL) def predict_sentiment(text): """ Predicts the sentiment of a given text. Args: text (str): The input text to classify. Returns: np.ndarray: The predicted probabilities for each sentiment class. """ outputs = [] encoded_text = tokenizer( text=text, max_length=512, add_special_tokens=True, return_token_type_ids=False, padding="max_length", truncation=True, return_attention_mask=True, return_tensors="pt", ) input_ids = encoded_text["input_ids"].to(device) attention_mask = encoded_text["attention_mask"].to(device) with torch.no_grad(): output = model(input_ids, attention_mask) probabilities = torch.nn.functional.softmax(output, dim=1) outputs.append(probabilities.cpu().numpy()) return np.concatenate(outputs, axis=0) def get_sentiment_and_score(user_input): """ Gets the sentiment and score for a given user input. Args: user_input (str): The input text from the user. Returns: tuple: The predicted sentiment and its corresponding score. """ output_probabilities = predict_sentiment(user_input) predicted_index = np.argmax(output_probabilities) predicted_sentiment = SENTIMENT_MAPPING.get(predicted_index) sentiment_score = np.max(output_probabilities) return predicted_sentiment, sentiment_score if __name__ == "__main__": if torch.cuda.is_available(): device = torch.device("cuda") else: device = torch.device("cpu") model = load_model() tokenizer = load_tokenizer() user_input = st.text_input("Glassdoor Review Text") if user_input: predicted_sentiment, sentiment_score = get_sentiment_and_score(user_input) st.write( f"**Sentiment:** {predicted_sentiment}, **Score:** {sentiment_score:.4f} " )