File size: 3,051 Bytes
78b7771
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
"""
This module provides a Streamlit web application for classifying Glassdoor
reviews into sentiment categories using a fine-tuned BERT model.
"""

import numpy as np
import streamlit as st
import torch
from transformers import BertTokenizer

from config import (BERTIMBAU_FINETUNED_MODEL, BERTIMBAU_MODEL,
                    SENTIMENT_MAPPING)
from glassdoor_reviews_classifier import GlassdoorReviewsClassifier


@st.cache_resource
def load_model():
    """
    Loads the fine-tuned BERT model for sentiment classification.

    Returns:
        model (GlassdoorReviewsClassifier): The loaded model.
    """
    try:
        model = GlassdoorReviewsClassifier().to(device)
        model.load_state_dict(
            torch.load(BERTIMBAU_FINETUNED_MODEL, map_location=device)
        )

        model.eval()

        return model
    except Exception as e:
        st.error(f"Error loading model: {e}")
        return None


@st.cache_resource
def load_tokenizer():
    """
    Loads the BERT tokenizer.

    Returns:
        tokenizer (BertTokenizer): The loaded tokenizer.
    """
    return BertTokenizer.from_pretrained(BERTIMBAU_MODEL)


def predict_sentiment(text):
    """
    Predicts the sentiment of a given text.

    Args:
        text (str): The input text to classify.

    Returns:
        np.ndarray: The predicted probabilities for each sentiment class.
    """
    outputs = []
    encoded_text = tokenizer(
        text=text,
        max_length=512,
        add_special_tokens=True,
        return_token_type_ids=False,
        padding="max_length",
        truncation=True,
        return_attention_mask=True,
        return_tensors="pt",
    )

    input_ids = encoded_text["input_ids"].to(device)
    attention_mask = encoded_text["attention_mask"].to(device)

    with torch.no_grad():
        output = model(input_ids, attention_mask)
        probabilities = torch.nn.functional.softmax(output, dim=1)
        outputs.append(probabilities.cpu().numpy())

    return np.concatenate(outputs, axis=0)


def get_sentiment_and_score(user_input):
    """
    Gets the sentiment and score for a given user input.

    Args:
        user_input (str): The input text from the user.

    Returns:
        tuple: The predicted sentiment and its corresponding score.
    """
    output_probabilities = predict_sentiment(user_input)

    predicted_index = np.argmax(output_probabilities)
    predicted_sentiment = SENTIMENT_MAPPING.get(predicted_index)

    sentiment_score = np.max(output_probabilities)

    return predicted_sentiment, sentiment_score


if __name__ == "__main__":
    if torch.cuda.is_available():
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")

    model = load_model()
    tokenizer = load_tokenizer()

    user_input = st.text_input("Glassdoor Review Text")

    if user_input:
        predicted_sentiment, sentiment_score = get_sentiment_and_score(user_input)

        st.write(
            f"**Sentiment:** {predicted_sentiment}, **Score:** {sentiment_score:.4f} "
        )