Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -31,7 +31,7 @@ def understand_func(
|
|
31 |
|
32 |
@spaces.GPU
|
33 |
def generate_func(
|
34 |
-
text, use_cot, height, width, guidance_scale, inference_steps, seed, separate_cfg_infer, offload_model, max_input_image_size, randomize_seed, save_images, do_sample, temperature, max_new_tokens, input_llm_images, only_understand):
|
35 |
if input_llm_images is not None and not isinstance(input_llm_images, list):
|
36 |
input_llm_images = [input_llm_images]
|
37 |
|
@@ -41,7 +41,8 @@ def generate_func(
|
|
41 |
print(f'Generate image prompt: {text}')
|
42 |
output, prompt_ = MindOmni_model.generate_image(
|
43 |
height, width, guidance_scale, inference_steps, separate_cfg_infer, offload_model, seed, max_input_image_size,
|
44 |
-
text, NEGATIVE_PROMPT, input_llm_images, do_sample, temperature, max_new_tokens, only_understand, use_cot=use_cot
|
|
|
45 |
print('Generation finished.')
|
46 |
|
47 |
img = output[0]
|
@@ -74,8 +75,9 @@ def build_gradio():
|
|
74 |
g_btn = gr.Button("π Generate Image")
|
75 |
|
76 |
with gr.Accordion("π Image Generation Args"):
|
77 |
-
g_use_cot = gr.Checkbox(label="
|
78 |
-
|
|
|
79 |
g_temperature = gr.Slider(0, 10, value=1, label="Temperature")
|
80 |
g_max_new_tok = gr.Slider(32, 8192, value=512, label="Max new tokens")
|
81 |
|
@@ -99,25 +101,25 @@ def build_gradio():
|
|
99 |
with gr.Accordion("πΌοΈ Prompt Examples: Text-only"):
|
100 |
gr.Examples(
|
101 |
examples=[
|
102 |
-
["Futuristic city skyline at sunset, digital art", 42, False, False, False, 1024, 1024, "assets/example_outputs/case_1.png"],
|
103 |
-
["An image of China's national treasure animal.", 42, False, True, False, 1024, 1024, "assets/example_outputs/case_2.png"],
|
104 |
-
["Scene in the Sydney Opera House when New York is at noon.", 42, False, True, False, 1024, 1024, "assets/example_outputs/case_3.png"],
|
105 |
-
["Generate an image of an animal with (3 + 6) lives", 7393438, False, True, False, 1024, 1024, "assets/example_outputs/case_4.png"],
|
106 |
],
|
107 |
-
inputs=[g_prompt, g_seed, g_rand, g_use_cot, g_do_sample, g_height, g_width, g_out_img],
|
108 |
)
|
109 |
with gr.Accordion("πΌοΈ Prompt Examples: With reference image"):
|
110 |
gr.Examples(
|
111 |
examples=[
|
112 |
-
["An image of the animal growing up", "assets/tapdole.jpeg", 42, False, True, True, 1024, 1024, "assets/example_outputs/case_5.png"]
|
113 |
],
|
114 |
-
inputs=[g_prompt, g_image, g_seed, g_rand, g_use_cot, g_do_sample, g_height, g_width, g_out_img],
|
115 |
)
|
116 |
|
117 |
g_btn.click(
|
118 |
generate_func,
|
119 |
-
inputs=[g_prompt, g_use_cot, g_height, g_width, g_scale,
|
120 |
-
g_seed, g_sep_cfg, g_offload, g_max_img, g_rand, g_save,
|
121 |
g_do_sample, g_temperature, g_max_new_tok,
|
122 |
g_image, gr.State(False)], # only_understand=False
|
123 |
outputs=[g_out_img, g_prompt_out, g_seed_out])
|
|
|
31 |
|
32 |
@spaces.GPU
|
33 |
def generate_func(
|
34 |
+
MindOmni_model, text, use_cot, cascade_thinking, height, width, guidance_scale, inference_steps, seed, separate_cfg_infer, offload_model, max_input_image_size, randomize_seed, save_images, do_sample, temperature, max_new_tokens, input_llm_images, only_understand):
|
35 |
if input_llm_images is not None and not isinstance(input_llm_images, list):
|
36 |
input_llm_images = [input_llm_images]
|
37 |
|
|
|
41 |
print(f'Generate image prompt: {text}')
|
42 |
output, prompt_ = MindOmni_model.generate_image(
|
43 |
height, width, guidance_scale, inference_steps, separate_cfg_infer, offload_model, seed, max_input_image_size,
|
44 |
+
text, NEGATIVE_PROMPT, input_llm_images, do_sample, temperature, max_new_tokens, only_understand, use_cot=use_cot,
|
45 |
+
cascade_thinking=cascade_thinking)
|
46 |
print('Generation finished.')
|
47 |
|
48 |
img = output[0]
|
|
|
75 |
g_btn = gr.Button("π Generate Image")
|
76 |
|
77 |
with gr.Accordion("π Image Generation Args"):
|
78 |
+
g_use_cot = gr.Checkbox(label="Use thinking", value=False)
|
79 |
+
g_cascade_thinking = gr.Checkbox(label="Cascade thinking (experimental for better quality)", value=False)
|
80 |
+
g_do_sample = gr.Checkbox(label="Do sample (for more diversity)", value=False)
|
81 |
g_temperature = gr.Slider(0, 10, value=1, label="Temperature")
|
82 |
g_max_new_tok = gr.Slider(32, 8192, value=512, label="Max new tokens")
|
83 |
|
|
|
101 |
with gr.Accordion("πΌοΈ Prompt Examples: Text-only"):
|
102 |
gr.Examples(
|
103 |
examples=[
|
104 |
+
["Futuristic city skyline at sunset, digital art", 42, False, False, False, False, 1024, 1024, "assets/example_outputs/case_1.png"],
|
105 |
+
["An image of China's national treasure animal.", 42, False, True, False, False, 1024, 1024, "assets/example_outputs/case_2.png"],
|
106 |
+
["Scene in the Sydney Opera House when New York is at noon.", 42, False, True, False, False, 1024, 1024, "assets/example_outputs/case_3.png"],
|
107 |
+
["Generate an image of an animal with (3 + 6) lives", 7393438, False, True, False, False, 1024, 1024, "assets/example_outputs/case_4.png"],
|
108 |
],
|
109 |
+
inputs=[g_prompt, g_seed, g_rand, g_use_cot, g_cascade_thinking, g_do_sample, g_height, g_width, g_out_img],
|
110 |
)
|
111 |
with gr.Accordion("πΌοΈ Prompt Examples: With reference image"):
|
112 |
gr.Examples(
|
113 |
examples=[
|
114 |
+
["An image of the animal growing up", "assets/tapdole.jpeg", 42, False, True, False, True, 1024, 1024, "assets/example_outputs/case_5.png"]
|
115 |
],
|
116 |
+
inputs=[g_prompt, g_image, g_seed, g_rand, g_use_cot, g_cascade_thinking, g_do_sample, g_height, g_width, g_out_img],
|
117 |
)
|
118 |
|
119 |
g_btn.click(
|
120 |
generate_func,
|
121 |
+
inputs=[g_prompt, g_use_cot, g_cascade_thinking, g_height, g_width, g_scale,
|
122 |
+
g_steps, g_seed, g_sep_cfg, g_offload, g_max_img, g_rand, g_save,
|
123 |
g_do_sample, g_temperature, g_max_new_tok,
|
124 |
g_image, gr.State(False)], # only_understand=False
|
125 |
outputs=[g_out_img, g_prompt_out, g_seed_out])
|