MindOmni / app.py
stevengrove's picture
Update app.py
8e39762 verified
raw
history blame
8.47 kB
import spaces
import os
import argparse
from functools import partial
import torch
import random
import gradio as gr
from src import MindOmni
NEGATIVE_PROMPT = '''
low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers.
'''
MindOmni_model = MindOmni.from_pretrained('EasonXiao-888/MindOmni')
MindOmni_model.to(device='cuda', dtype=torch.bfloat16)
MindOmni_model.eval()
@spaces.GPU
def understand_func(
text, do_sample, temperature,
max_new_tokens, input_llm_images):
if input_llm_images is not None and not isinstance(input_llm_images, list):
input_llm_images = [input_llm_images]
answer = MindOmni_model.generate_text(
text, input_llm_images, do_sample, temperature,
max_new_tokens, only_understand=True)
return answer
@spaces.GPU
def generate_func(
text, use_cot, cascade_thinking, height, width, guidance_scale, inference_steps, seed, separate_cfg_infer, offload_model, max_input_image_size, randomize_seed, save_images, do_sample, temperature, max_new_tokens, input_llm_images, only_understand):
if input_llm_images is not None and not isinstance(input_llm_images, list):
input_llm_images = [input_llm_images]
if randomize_seed:
seed = random.randint(0, 10000000)
print(f'Generate image prompt: {text}')
output, prompt_ = MindOmni_model.generate_image(
height, width, guidance_scale, inference_steps, separate_cfg_infer, offload_model, seed, max_input_image_size,
text, NEGATIVE_PROMPT, input_llm_images, do_sample, temperature, max_new_tokens, only_understand, use_cot=use_cot,
cascade_thinking=cascade_thinking)
print('Generation finished.')
img = output[0]
if save_images:
# Save All Generated Images
from datetime import datetime
# Create outputs directory if it doesn't exist
os.makedirs('assets/outputs', exist_ok=True)
# Generate unique filename with timestamp
timestamp = datetime.now().strftime("%Y_%m_%d-%H_%M_%S")
output_path = os.path.join('assets/outputs', f'{timestamp}.png')
# Save the image
img.save(output_path)
return img, prompt_, seed
def build_gradio():
with gr.Blocks() as demo:
gr.Markdown("## πŸͺ„ MindOmni Demo")
with gr.Tabs():
# ---------- GENERATE ----------
with gr.TabItem("🎨 Generate"):
with gr.Row():
with gr.Column(scale=1):
g_prompt = gr.Textbox(label="Text prompt")
g_image = gr.Image(label="Condition image (optional)", type="filepath")
g_btn = gr.Button("πŸš€ Generate Image")
with gr.Accordion("πŸ“š Image Generation Args"):
g_use_cot = gr.Checkbox(label="Use thinking", value=True)
g_cascade_thinking = gr.Checkbox(label="Cascade thinking (experimental for better quality)", value=False)
g_do_sample = gr.Checkbox(label="Do sample (for more diversity)", value=False)
g_temperature = gr.Slider(0, 10, value=0.6, label="Temperature")
g_max_new_tok = gr.Slider(32, 8192, value=512, label="Max new tokens")
g_height = gr.Slider(128, 2048, value=1024, step=16, label="Height")
g_width = gr.Slider(128, 2048, value=1024, step=16, label="Width")
g_scale = gr.Slider(1.0, 5.0, value=3.0, step=0.1, label="Guidance Scale")
g_steps = gr.Slider(1, 100, value=50, label="Inference Steps")
g_seed = gr.Slider(0, 2**31 - 1, value=42, label="Seed")
g_rand = gr.Checkbox(label="Randomize seed", value=False)
g_max_img = gr.Slider(128, 2048, value=1024, step=16,
label="Max input image size")
g_sep_cfg = gr.Checkbox(label="Separate-CFG infer", value=True)
g_offload = gr.Checkbox(label="Offload model to CPU", value=False)
g_save = gr.Checkbox(label="Save generated images", value=False)
with gr.Column(scale=1):
g_out_img = gr.Image(label="Generated Image")
g_prompt_out = gr.Textbox(label="MindOmni CoT Content")
g_seed_out = gr.Textbox(label="Used seed")
with gr.Accordion("πŸ–ΌοΈ Prompt Examples: Text-only"):
gr.Examples(
examples=[
["Futuristic city skyline at sunset, digital art", 42, False, False, False, False, 1024, 1024, "assets/example_outputs/case_1.png"],
["An image of China's national treasure animal.", 42, False, True, False, False, 1024, 1024, "assets/example_outputs/case_2.png"],
["Scene in the Sydney Opera House when New York is at noon.", 42, False, True, False, False, 1024, 1024, "assets/example_outputs/case_3.png"],
["Generate an image of an animal with (3 + 6) lives", 7393438, False, True, False, False, 1024, 1024, "assets/example_outputs/case_4.png"],
],
inputs=[g_prompt, g_seed, g_rand, g_use_cot, g_cascade_thinking, g_do_sample, g_height, g_width, g_out_img],
)
with gr.Accordion("πŸ–ΌοΈ Prompt Examples: With reference image"):
gr.Examples(
examples=[
["An image of the animal growing up", "assets/tapdole.jpeg", 42, False, True, False, True, 1024, 1024, "assets/example_outputs/case_5.png"]
],
inputs=[g_prompt, g_image, g_seed, g_rand, g_use_cot, g_cascade_thinking, g_do_sample, g_height, g_width, g_out_img],
)
g_btn.click(
generate_func,
inputs=[g_prompt, g_use_cot, g_cascade_thinking, g_height, g_width, g_scale,
g_steps, g_seed, g_sep_cfg, g_offload, g_max_img, g_rand, g_save,
g_do_sample, g_temperature, g_max_new_tok,
g_image, gr.State(False)], # only_understand=False
outputs=[g_out_img, g_prompt_out, g_seed_out])
# ---------- UNDERSTAND ----------
with gr.TabItem("🧠 Understand"):
with gr.Row():
with gr.Column(scale=1):
u_prompt = gr.Textbox(label="Text prompt")
u_image = gr.Image(label="Image (optional)", type="filepath")
u_btn = gr.Button("πŸ” Understand")
with gr.Accordion("πŸ“š Text Generation Args"):
u_do_sample = gr.Checkbox(label="Do sample", value=False)
u_temperature = gr.Slider(0, 10, value=1, label="Temperature")
u_max_new_tok = gr.Slider(32, 8192, value=512, label="Max new tokens")
with gr.Column(scale=1):
u_answer = gr.Textbox(label="Answer", lines=8)
u_btn.click(
understand_func,
inputs=[u_prompt, u_do_sample,
u_temperature, u_max_new_tok, u_image],
outputs=u_answer)
# ---------- MULTIPLE IMAGES EDITING (Coming Soon) ----------
with gr.TabItem("πŸ–ΌοΈ Multiple Images Fine-grained Editing"):
with gr.Column():
gr.Markdown("🚧 **Coming Soon**: Support for fine-grained editing on multiple images will be available in future updates.")
demo.launch()
if __name__ == '__main__':
build_gradio()