# Databricks notebook source import streamlit as st import os import yaml from dotenv import load_dotenv import torch from src.generator import answer_with_rag from ragatouille import RAGPretrainedModel from src.data_preparation import split_documents from src.embeddings import init_embedding_model from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings, ChatNVIDIA from transformers import pipeline from langchain_community.document_loaders import PyPDFLoader from langchain_community.embeddings import HuggingFaceEmbeddings from src.retriever import init_vectorDB_from_doc, retriever from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig from langchain_community.vectorstores import FAISS import faiss def load_config(): with open("./config.yml","r") as file_object: try: cfg=yaml.safe_load(file_object) except yaml.YAMLError as exc: logger.error(str(exc)) raise else: return cfg cfg= load_config() #os.environ['NVIDIA_API_KEY']=st.secrets("NVIDIA_API_KEY") #load_dotenv("./src/.env") #HF_TOKEN=os.environ.get["HF_TOKEN"] #st.write(os.environ["HF_TOKEN"] == st.secrets["HF_TOKEN"]) EMBEDDING_MODEL_NAME=cfg['EMBEDDING_MODEL_NAME'] DATA_FILE_PATH=cfg['DATA_FILE_PATH'] READER_MODEL_NAME=cfg['READER_MODEL_NAME'] RERANKER_MODEL_NAME=cfg['RERANKER_MODEL_NAME'] VECTORDB_PATH=cfg['VECTORDB_PATH'] def main(): st.title("Un RAG pour interroger le Collège de Pédiatrie 2024") user_query = st.text_input("Entrez votre question:") if "KNOWLEDGE_VECTOR_DATABASE" not in st.session_state: # Initialize the retriever and LLM st.session_state.loader = PyPDFLoader(DATA_FILE_PATH) #loader = PyPDFDirectoryLoader(DATA_FILE_PATH) st.session_state.raw_document_base = st.session_state.loader.load() st.session_state.MARKDOWN_SEPARATORS = [ "\n#{1,6} ", "```\n", "\n\\*\\*\\*+\n", "\n---+\n", "\n___+\n", "\n\n", "\n", " ", "",] st.session_state.docs_processed = split_documents( 400, # We choose a chunk size adapted to our model st.session_state.raw_document_base, #tokenizer_name=EMBEDDING_MODEL_NAME, separator=st.session_state.MARKDOWN_SEPARATORS ) st.session_state.embedding_model=NVIDIAEmbeddings(model="NV-Embed-QA", truncate="END") st.session_state.KNOWLEDGE_VECTOR_DATABASE= init_vectorDB_from_doc(st.session_state.docs_processed, st.session_state.embedding_model) if (user_query) and (st.button("Get Answer")): num_doc_before_rerank=5 st.session_state.retriever= st.session_state.KNOWLEDGE_VECTOR_DATABASE.as_retriever(search_type="similarity", search_kwargs={"k": num_doc_before_rerank}) st.write("### Please wait while we are getting the answer.....") llm = ChatNVIDIA( model=READER_MODEL_NAME, api_key= os.getenv("NVIDIA_API_KEY"), temperature=0.2, top_p=0.7, max_tokens=1024, ) answer, relevant_docs = answer_with_rag(query=user_query, llm=llm, retriever=st.session_state.retriever) st.write("### Answer:") st.write(answer) # Display the relevant documents st.write("### Relevant Documents:") for i, doc in enumerate(relevant_docs): st.write(f"Document {i}:\n{doc}") if __name__ == "__main__": main()