ucaslcl's picture
Update app.py
d6f9dda verified
raw
history blame
8.36 kB
import gradio as gr
import spaces
from transformers import AutoModel, AutoTokenizer
from PIL import Image
import numpy as np
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True)
model = model.eval().cuda()
html_file = './demo.html'
@spaces.GPU
def run_GOT(image_array, got_mode, fine_grained_mode="", ocr_color="", ocr_box=""):
image = image_array
if got_mode == "plain texts OCR":
res = model.chat(tokenizer, image, ocr_type='ocr')
elif got_mode == "format texts OCR":
res = model.chat(tokenizer, image, ocr_type='format', render=True, save_render_file=html_file)
elif got_mode == "plain multi-crop OCR":
res = model.chat_crop(tokenizer, image, ocr_type='ocr')
elif got_mode == "format multi-crop OCR":
res = model.chat_crop(tokenizer, image, ocr_type='format', render=True, save_render_file=html_file)
elif got_mode == "plain fine-grained OCR":
res = model.chat(tokenizer, image, ocr_type='ocr', ocr_box=ocr_box, ocr_color=ocr_color)
elif got_mode == "format fine-grained OCR":
res = model.chat(tokenizer, image, ocr_type='format', ocr_box=ocr_box, ocr_color=ocr_color, render=True, save_render_file=html_file)
print("res:\n", res)
if "format" in got_mode:
with open(html_file, 'r') as f:
demo_html = f.read()
print("demo_html: \n", demo_html)
return res, demo_html
return res, None
def task_update(task):
if "fine-grained" in task:
return [
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False),
]
else:
return [
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
]
def fine_grained_update(task):
if task == "box":
return [
gr.update(visible=False, value = ""),
gr.update(visible=True),
]
elif task == 'color':
return [
gr.update(visible=True),
gr.update(visible=False, value = ""),
]
with gr.Blocks() as demo:
gr.Markdown("""
# General OCR Theory: Towards OCR-2.0 via a Unified End-to-end Model
"🔥🔥🔥This is the official online demo of GOT-OCR-2.0 model!!!"
### Repo
- **Hugging Face**: [ucaslcl/GOT-OCR2_0](https://huggingface.co/ucaslcl/GOT-OCR2_0)
- **GitHub**: [Ucas-HaoranWei/GOT-OCR2_0](https://github.com/Ucas-HaoranWei/GOT-OCR2.0/)
- **Paper**: [AriXiv](https://arxiv.org/abs/2409.01704)
""")
with gr.Row():
with gr.Column():
image_input = gr.Image(type="filepath", label="upload your image")
task_dropdown = gr.Dropdown(
choices=[
"plain texts OCR",
"format texts OCR",
"plain multi-crop OCR",
"format multi-crop OCR",
"plain fine-grained OCR",
"format fine-grained OCR",
],
label="Choose one mode of GOT",
value="plain texts OCR"
)
fine_grained_dropdown = gr.Dropdown(
choices=["box", "color"],
label="fine-grained type",
visible=False
)
color_dropdown = gr.Dropdown(
choices=["red", "green", "blue"],
label="color list",
visible=False
)
box_input = gr.Textbox(
label="input box: [x1,y1,x2,y2]",
placeholder="e.g., [0,0,100,100]",
visible=False
)
submit_button = gr.Button("Submit")
with gr.Column():
ocr_result = gr.Textbox(label="GOT output")
gr.Markdown(
"""
\\[
\\begin{array}{l}
d_{L}\\left( C_{L},\\left\\{ v^{\\prime }\\right\\} \\right) =\\left\\vert C_{L}\\right\\vert
+\\left\\vert \\left\\{ v^{\\prime }\\right\\} \\right\\vert +2\\left( d_{T}\\left(
C_{L},v^{\\prime }\\right) -1\\right) \\\\\\
\\quad \\quad \\quad \\quad =\\left\\vert C_{v}\\right\\vert -1+\\left\\vert
S_{v}^{*}\\right\\vert +2\\left( \\mathrm{rad}\\,T-1\\right) \\\\\\
\\quad \\quad \\quad \\quad =\\left\\vert C{ }_{v}\\right\\vert +\\left\\vert
S_{v}^{*}\\right\\vert +2\\left( d_{T}\\left( C_{v},S_{v}^{*}\\right) -1\\right) \\\\\\
\\quad \\quad \\quad \\quad \\quad -1+2\\left( \\mathrm{rad}\\,T-d_{T}\\left( C_{v},S_{v}^{*}\\right)
\\right) \\\\\\
\\quad \\quad \\quad \\quad =d_{L}\\left( C_{v},S_{v}^{*}\\right) +1+2\\left( \\mathrm{rad}%
\\text{\\,}T-1-d_{T}\\left( C_{v},S_{v}^{*}\\right) \\right) \\\\\\
\\quad \\quad \\quad \\quad \\quad =e_{L}\\left( C_{v}\\right) +1+2\\left( \\mathrm{rad}%
\\text{\\,}T -1-d_{T}\\left( C_{v},S_{v}^{*}\\right)\\right) .
\\end{array}
\\]
"""
)
with gr.Column():
html_show = gr.HTML(f'<a href="{html_file}" target="_blank">Open Demo HTML</a>')
with gr.Column():
html_result = gr.HTML(
value="""
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>MathJax Example</title>
<script src="https://cdn.jsdelivr.net/npm/[email protected]/es5/bundle.js"></script>
<style>
#content {
max-width: 800px;
margin: auto;
}
</style>
</head>
<body>
<div id="content">
<p>Here is an example of a LaTeX formula:</p>
<div id="math-content">
\\[
\\begin{array}{l}
d_{L}\\left( C_{L},\\left\\{ v^{\\prime }\\right\\} \\right) =\\left\\vert C_{L}\\right\\vert
+\\left\\vert \\left\\{ v^{\\prime }\\right\\} \\right\\vert +2\\left( d_{T}\\left(
C_{L},v^{\\prime }\\right) -1\\right) \\\\\\
\\quad \\quad \\quad \\quad =\\left\\vert C_{v}\\right\\vert -1+\\left\\vert
S_{v}^{*}\\right\\vert +2\\left( \\mathrm{rad}\\,T-1\\right) \\\\\\
\\quad \\quad \\quad \\quad =\\left\\vert C{ }_{v}\\right\\vert +\\left\\vert
S_{v}^{*}\\right\\vert +2\\left( d_{T}\\left( C_{v},S_{v}^{*}\\right) -1\\right) \\\\\\
\\quad \\quad \\quad \\quad \\quad -1+2\\left( \\mathrm{rad}\\,T-d_{T}\\left( C_{v},S_{v}^{*}\\right)
\\right) \\\\\\
\\quad \\quad \\quad \\quad =d_{L}\\left( C_{v},S_{v}^{*}\\right) +1+2\\left( \\mathrm{rad}%
\\text{\\,}T-1-d_{T}\\left( C_{v},S_{v}^{*}\\right) \\right) \\\\\\
\\quad \\quad \\quad \\quad \\quad =e_{L}\\left( C_{v}\\right) +1+2\\left( \\mathrm{rad}%
\\text{\\,}T -1-d_{T}\\left( C_{v},S_{v}^{*}\\right)\\right) .
\\end{array}
\\]
</div>
</div>
</body>
</html>
""",
label="rendered html", show_label=True)
gr.Examples(
examples=[
["assets/coco.jpg", "plain texts OCR", "", "", ""],
["assets/en2.png", "plain texts OCR", "", "", ""],
["assets/eq.jpg", "format texts OCR", "", "", ""],
["assets/table.jpg", "format texts OCR", "", "", ""],
["assets/giga.jpg", "format multi-crop OCR", "", "", ""],
["assets/aff2.png", "plain fine-grained OCR", "box", "", "[409,763,756,891]"],
["assets/color.png", "plain fine-grained OCR", "color", "red", ""],
],
inputs=[image_input, task_dropdown, fine_grained_dropdown, color_dropdown, box_input],
outputs=[ocr_result, html_result],
fn = run_GOT,
label="examples",
)
task_dropdown.change(
task_update,
inputs=[task_dropdown],
outputs=[fine_grained_dropdown, color_dropdown, box_input]
)
fine_grained_dropdown.change(
fine_grained_update,
inputs=[fine_grained_dropdown],
outputs=[color_dropdown, box_input]
)
submit_button.click(
run_GOT,
inputs=[image_input, task_dropdown, fine_grained_dropdown, color_dropdown, box_input],
outputs=[ocr_result, html_result]
)
demo.launch()