Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
from transformers import AutoModel, AutoTokenizer | |
from PIL import Image | |
import numpy as np | |
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True) | |
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True) | |
model = model.eval().cuda() | |
html_file = './demo.html' | |
def run_GOT(image_array, got_mode, fine_grained_mode="", ocr_color="", ocr_box=""): | |
image = image_array | |
if got_mode == "plain texts OCR": | |
res = model.chat(tokenizer, image, ocr_type='ocr') | |
elif got_mode == "format texts OCR": | |
res = model.chat(tokenizer, image, ocr_type='format', render=True, save_render_file=html_file) | |
elif got_mode == "plain multi-crop OCR": | |
res = model.chat_crop(tokenizer, image, ocr_type='ocr') | |
elif got_mode == "format multi-crop OCR": | |
res = model.chat_crop(tokenizer, image, ocr_type='format', render=True, save_render_file=html_file) | |
elif got_mode == "plain fine-grained OCR": | |
res = model.chat(tokenizer, image, ocr_type='ocr', ocr_box=ocr_box, ocr_color=ocr_color) | |
elif got_mode == "format fine-grained OCR": | |
res = model.chat(tokenizer, image, ocr_type='format', ocr_box=ocr_box, ocr_color=ocr_color, render=True, save_render_file=html_file) | |
print("res:\n", res) | |
if "format" in got_mode: | |
with open(html_file, 'r') as f: | |
demo_html = f.read() | |
print("demo_html: \n", demo_html) | |
return res, demo_html | |
return res, None | |
def task_update(task): | |
if "fine-grained" in task: | |
return [ | |
gr.update(visible=True), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
] | |
else: | |
return [ | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
] | |
def fine_grained_update(task): | |
if task == "box": | |
return [ | |
gr.update(visible=False, value = ""), | |
gr.update(visible=True), | |
] | |
elif task == 'color': | |
return [ | |
gr.update(visible=True), | |
gr.update(visible=False, value = ""), | |
] | |
with gr.Blocks() as demo: | |
gr.Markdown(""" | |
# General OCR Theory: Towards OCR-2.0 via a Unified End-to-end Model | |
"🔥🔥🔥This is the official online demo of GOT-OCR-2.0 model!!!" | |
### Repo | |
- **Hugging Face**: [ucaslcl/GOT-OCR2_0](https://huggingface.co/ucaslcl/GOT-OCR2_0) | |
- **GitHub**: [Ucas-HaoranWei/GOT-OCR2_0](https://github.com/Ucas-HaoranWei/GOT-OCR2.0/) | |
- **Paper**: [AriXiv](https://arxiv.org/abs/2409.01704) | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image(type="filepath", label="upload your image") | |
task_dropdown = gr.Dropdown( | |
choices=[ | |
"plain texts OCR", | |
"format texts OCR", | |
"plain multi-crop OCR", | |
"format multi-crop OCR", | |
"plain fine-grained OCR", | |
"format fine-grained OCR", | |
], | |
label="Choose one mode of GOT", | |
value="plain texts OCR" | |
) | |
fine_grained_dropdown = gr.Dropdown( | |
choices=["box", "color"], | |
label="fine-grained type", | |
visible=False | |
) | |
color_dropdown = gr.Dropdown( | |
choices=["red", "green", "blue"], | |
label="color list", | |
visible=False | |
) | |
box_input = gr.Textbox( | |
label="input box: [x1,y1,x2,y2]", | |
placeholder="e.g., [0,0,100,100]", | |
visible=False | |
) | |
submit_button = gr.Button("Submit") | |
with gr.Column(): | |
ocr_result = gr.Textbox(label="GOT output") | |
gr.Markdown( | |
""" | |
\\[ | |
\\begin{array}{l} | |
d_{L}\\left( C_{L},\\left\\{ v^{\\prime }\\right\\} \\right) =\\left\\vert C_{L}\\right\\vert | |
+\\left\\vert \\left\\{ v^{\\prime }\\right\\} \\right\\vert +2\\left( d_{T}\\left( | |
C_{L},v^{\\prime }\\right) -1\\right) \\\\\\ | |
\\quad \\quad \\quad \\quad =\\left\\vert C_{v}\\right\\vert -1+\\left\\vert | |
S_{v}^{*}\\right\\vert +2\\left( \\mathrm{rad}\\,T-1\\right) \\\\\\ | |
\\quad \\quad \\quad \\quad =\\left\\vert C{ }_{v}\\right\\vert +\\left\\vert | |
S_{v}^{*}\\right\\vert +2\\left( d_{T}\\left( C_{v},S_{v}^{*}\\right) -1\\right) \\\\\\ | |
\\quad \\quad \\quad \\quad \\quad -1+2\\left( \\mathrm{rad}\\,T-d_{T}\\left( C_{v},S_{v}^{*}\\right) | |
\\right) \\\\\\ | |
\\quad \\quad \\quad \\quad =d_{L}\\left( C_{v},S_{v}^{*}\\right) +1+2\\left( \\mathrm{rad}% | |
\\text{\\,}T-1-d_{T}\\left( C_{v},S_{v}^{*}\\right) \\right) \\\\\\ | |
\\quad \\quad \\quad \\quad \\quad =e_{L}\\left( C_{v}\\right) +1+2\\left( \\mathrm{rad}% | |
\\text{\\,}T -1-d_{T}\\left( C_{v},S_{v}^{*}\\right)\\right) . | |
\\end{array} | |
\\] | |
""" | |
) | |
with gr.Column(): | |
html_show = gr.HTML(f'<a href="{html_file}" target="_blank">Open Demo HTML</a>') | |
with gr.Column(): | |
html_result = gr.HTML( | |
value=""" | |
<!DOCTYPE html> | |
<html lang="en"> | |
<head> | |
<meta charset="UTF-8"> | |
<title>MathJax Example</title> | |
<script src="https://cdn.jsdelivr.net/npm/[email protected]/es5/bundle.js"></script> | |
<style> | |
#content { | |
max-width: 800px; | |
margin: auto; | |
} | |
</style> | |
</head> | |
<body> | |
<div id="content"> | |
<p>Here is an example of a LaTeX formula:</p> | |
<div id="math-content"> | |
\\[ | |
\\begin{array}{l} | |
d_{L}\\left( C_{L},\\left\\{ v^{\\prime }\\right\\} \\right) =\\left\\vert C_{L}\\right\\vert | |
+\\left\\vert \\left\\{ v^{\\prime }\\right\\} \\right\\vert +2\\left( d_{T}\\left( | |
C_{L},v^{\\prime }\\right) -1\\right) \\\\\\ | |
\\quad \\quad \\quad \\quad =\\left\\vert C_{v}\\right\\vert -1+\\left\\vert | |
S_{v}^{*}\\right\\vert +2\\left( \\mathrm{rad}\\,T-1\\right) \\\\\\ | |
\\quad \\quad \\quad \\quad =\\left\\vert C{ }_{v}\\right\\vert +\\left\\vert | |
S_{v}^{*}\\right\\vert +2\\left( d_{T}\\left( C_{v},S_{v}^{*}\\right) -1\\right) \\\\\\ | |
\\quad \\quad \\quad \\quad \\quad -1+2\\left( \\mathrm{rad}\\,T-d_{T}\\left( C_{v},S_{v}^{*}\\right) | |
\\right) \\\\\\ | |
\\quad \\quad \\quad \\quad =d_{L}\\left( C_{v},S_{v}^{*}\\right) +1+2\\left( \\mathrm{rad}% | |
\\text{\\,}T-1-d_{T}\\left( C_{v},S_{v}^{*}\\right) \\right) \\\\\\ | |
\\quad \\quad \\quad \\quad \\quad =e_{L}\\left( C_{v}\\right) +1+2\\left( \\mathrm{rad}% | |
\\text{\\,}T -1-d_{T}\\left( C_{v},S_{v}^{*}\\right)\\right) . | |
\\end{array} | |
\\] | |
</div> | |
</div> | |
</body> | |
</html> | |
""", | |
label="rendered html", show_label=True) | |
gr.Examples( | |
examples=[ | |
["assets/coco.jpg", "plain texts OCR", "", "", ""], | |
["assets/en2.png", "plain texts OCR", "", "", ""], | |
["assets/eq.jpg", "format texts OCR", "", "", ""], | |
["assets/table.jpg", "format texts OCR", "", "", ""], | |
["assets/giga.jpg", "format multi-crop OCR", "", "", ""], | |
["assets/aff2.png", "plain fine-grained OCR", "box", "", "[409,763,756,891]"], | |
["assets/color.png", "plain fine-grained OCR", "color", "red", ""], | |
], | |
inputs=[image_input, task_dropdown, fine_grained_dropdown, color_dropdown, box_input], | |
outputs=[ocr_result, html_result], | |
fn = run_GOT, | |
label="examples", | |
) | |
task_dropdown.change( | |
task_update, | |
inputs=[task_dropdown], | |
outputs=[fine_grained_dropdown, color_dropdown, box_input] | |
) | |
fine_grained_dropdown.change( | |
fine_grained_update, | |
inputs=[fine_grained_dropdown], | |
outputs=[color_dropdown, box_input] | |
) | |
submit_button.click( | |
run_GOT, | |
inputs=[image_input, task_dropdown, fine_grained_dropdown, color_dropdown, box_input], | |
outputs=[ocr_result, html_result] | |
) | |
demo.launch() |