File size: 20,015 Bytes
91e999e 86e2f15 91e999e efd1fd4 91e999e efd1fd4 91e999e 253c2af 91e999e 18e2f64 91e999e 18e2f64 91e999e efd1fd4 91e999e efd1fd4 91e999e 18e2f64 91e999e 3078283 bfda918 91e999e b3ec238 bfda918 b2a3132 1b42d98 8a1b729 1b42d98 3078283 1b42d98 91e999e bfda918 91e999e 39ff71f 91e999e efd1fd4 91e999e 8d0cfc1 86e2f15 725e4de 91e999e 725e4de b2fe716 925a57e 725e4de 9beccbd 725e4de 9beccbd 725e4de 91e999e 86e2f15 725e4de 925a57e 91e999e b2fe716 91e999e b2fe716 86e2f15 91e999e 725e4de 925a57e 725e4de 91e999e 725e4de 91e999e efd1fd4 925a57e 91e999e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 |
import os
from transformers import pipeline
import torch
import nltk
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
import fitz
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import pickle
import re
import logging
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import uvicorn
import asyncio
from config import (
ALL_FILES,
MATH_FILES,
SCIENCE_FILES,
DATA_DIR,
DOCUMENTS_PATH,
FAISS_INDEX_PATH,
HUGGINGFACE_TOKEN,
MODEL_ID
)
app = FastAPI(title="Swahili Content Generation API")
# Configure CORS
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
class PromptRequest(BaseModel):
prompt: str
class ContentRequest(BaseModel):
grade: int
subject: str
topic: str
style: str = "normal"
TOPIC_KEYWORDS = {
# Grade 3 Science
'mazingira g3.pdf': ['mazingira'],
'nishati g3.pdf': ['nishati'],
'maada g3.pdf': ['maada'],
'mawasiliano g3.pdf': ['mawasiliano'],
'usafi g3.pdf': ['usafi'],
'vipimo g3.pdf': ['vipimo-s'],
'mlo g3.pdf': ['mlo'],
'mfumo g3.pdf': ['mfumo'],
'maambukizi g3.pdf': ['maambukizi'],
'huduma g3.pdf': ['huduma'],
'vifaa g3.pdf': ['vifaa'],
# Grade 4 Science
'kinga ya mwili g4.txt': ['kinga'],
'magonjwa g4.txt': ['magonjwa'],
'majaribio ya kisayansi g4.txt': ['majaribio'],
'maji g4.txt': ['maji'],
'ukimwi g4.txt': ['ukimwi'],
'huduma g4.txt': ['huduma-g4'],
'mazingira g4.txt': ['mazingira-g4'],
'matumizi ya nishati g4.txt': ['matumizi-nishati-g4'],
'nishati g4.txt': ['nishati-g4'],
'mfumo g4.txt': ['mfumo-g4'],
'mawasiliano g4.txt': ['mawasiliano-g4'],
# MATH TOPICS Grade 3
'namba g3.txt': ['namba'],
'mpangilio g3.txt': ['mpangilio'],
'matendo katika namba g3.txt': ['matendo'],
'kutambua sehemu g3.txt': ['sehemu'],
'kutambua maumbo g3.txt': ['maumbo'],
'vipimo g3.txt': ['vipimo'],
'fedha g3.txt': ['fedha'],
'takwimu kwa picha g3.txt': ['takwimu'],
# MATH TOPICS Grade 4
'kugawanya namba g4.txt': ['kugawanya'],
'kujumlisha namba g4.txt': ['kujumlisha'],
'kuzidisha namba g4.txt': ['kuzidisha'],
'namba nzima g4.txt': ['namba-g4'],
'namba za kirumi g4.txt': ['kirumi'],
'wakati g4.txt': ['wakati'],
'mpangilio g4.txt': ['mpangilio-g4'],
'vipimo g4.txt': ['vipimo-g4'],
'takwimu g4.txt': ['takwimu-g4'],
'kutoa namba g4.txt': ['kutoa'],
'fedha g4.txt': ['fedha-g4'],
'sehemu g4.txt': ['sehemu-g4'],
'maumbo g4.txt': ['maumbo-g4']
}
def preprocess_pdf_text(text):
words_to_remove = ['FOR', 'ONLINE', 'USE', 'ONLY', 'DO', 'NOT', 'DUPLICATE', 'SAYANSI', 'STD', 'PM']
pattern = r'\b(?:' + '|'.join(map(re.escape, words_to_remove)) + r')\b'
text = re.sub(pattern, '', text, flags=re.IGNORECASE)
text = ' '.join(text.split())
text = re.sub(r'[^\w\s\.\,\?\!\'\"àèìòùÀÈÌÒÙáéíóúÁÉÍÓÚâêîôûÂÊÎÔÛãẽĩõũÃẼĨÕŨ]', ' ', text)
text = ' '.join(text.split())
return text
def extract_text_from_file(file_path):
if file_path.lower().endswith('.pdf'):
return extract_text_from_pdf(file_path)
elif file_path.lower().endswith('.txt'):
try:
with open(file_path, 'r', encoding='utf-8') as file:
text = file.read()
return text.strip()
except Exception as e:
logging.error(f"Error reading text file {file_path}: {str(e)}")
return ""
else:
logging.error(f"Unsupported file type for {file_path}")
return ""
def extract_text_from_pdf(pdf_path):
text = ""
with fitz.open(pdf_path) as doc:
for page_num, page in enumerate(doc):
try:
blocks = page.get_text("blocks")
page_text = "\n".join(block[4] for block in blocks)
cleaned_text = preprocess_pdf_text(page_text)
text += cleaned_text + "\n"
except Exception as e:
logging.error(f"Error processing page {page_num + 1}: {str(e)}")
continue
return text.strip()
def split_text_into_chunks(text, source_file, chunk_size=500, overlap=50):
# Clean the text
text = text.strip().replace('\n', ' ').replace(' ', ' ')
# Get filename and keywords
filename = os.path.basename(source_file)
keywords = TOPIC_KEYWORDS.get(filename, [])
# Use NLTK for better sentence tokenization
sentences = nltk.sent_tokenize(text)
chunks = []
current_chunk = []
current_size = 0
for sentence in sentences:
sentence_words = len(sentence.split())
if current_size + sentence_words > chunk_size:
if current_chunk:
# Create chunk with metadata
chunk_text = ' '.join(current_chunk)
chunk_info = {
'text': chunk_text,
'source': filename,
'keywords': keywords
}
chunks.append(chunk_info)
# Calculate overlap
overlap_size = 0
overlap_chunk = []
for s in reversed(current_chunk):
if overlap_size + len(s.split()) <= overlap:
overlap_chunk.insert(0, s)
overlap_size += len(s.split())
else:
break
current_chunk = overlap_chunk
current_size = overlap_size
current_chunk.append(sentence)
current_size += sentence_words
if current_chunk:
chunk_text = ' '.join(current_chunk)
chunks.append({
'text': chunk_text,
'source': filename,
'keywords': keywords
})
return chunks
def create_faiss_index(texts, embedding_model):
doc_embeddings = embedding_model.encode(texts)
index = faiss.IndexFlatL2(doc_embeddings.shape[1])
index.add(np.array(doc_embeddings))
return index
def retrieve_documents(query, index, embedding_model, documents, top_k=5):
query_lower = query.lower()
target_topic = None
# Simple direct keyword matching since we only have one keyword per topic
for filename, keywords in TOPIC_KEYWORDS.items():
if keywords[0] == query_lower:
target_topic = filename
break
# Get embeddings and search
query_embedding = embedding_model.encode([query])
distances, indices = index.search(query_embedding, top_k * 3)
# Filter and organize retrieved documents
topic_docs = []
for idx in indices[0]:
doc = documents[idx]
if doc['source'] == target_topic:
# Check if content is not too repetitive
if not any(existing.get('text', '') == doc['text'] for existing in topic_docs):
topic_docs.append(doc)
if len(topic_docs) >= top_k:
break
final_content = "\n\n".join(doc['text'] for doc in topic_docs[:top_k])
logger.info(f"Retrieved content from: {target_topic}")
return final_content
def calculate_bleu(reference, candidate):
"""
Calculate BLEU score between reference and candidate texts.
"""
if isinstance(reference, list):
reference = " ".join(reference)
if isinstance(candidate, list):
candidate = " ".join(candidate)
reference_tokens = [reference.split()]
candidate_tokens = candidate.split()
smoothing = SmoothingFunction().method1
return sentence_bleu(reference_tokens, candidate_tokens, smoothing_function=smoothing)
def get_topic_files(grade: int, subject: str, topic: str):
# Convert topic to lowercase for case-insensitive matching
topic_lower = topic.lower()
# Get the appropriate file list
file_list = MATH_FILES if subject.lower() == "math" else SCIENCE_FILES
# Filter files by grade and topic
matching_files = []
for file in file_list:
if f"g{grade}" in file.lower(): # Check grade
filename = os.path.basename(file)
if filename in TOPIC_KEYWORDS: # Check if file is in our topics
keywords = TOPIC_KEYWORDS[filename]
if topic_lower == keywords[0]:
matching_files.append(file)
return matching_files
def generate_response_with_rag(prompt, index, embedding_model, documents, settings):
# Retrieve relevant documents
retrieved_context = retrieve_documents(prompt, index, embedding_model, documents)
# Log the retrieved context
logger.info("Context sent to model:")
logger.info("-" * 50)
logger.info(retrieved_context)
logger.info("-" * 50)
style_instructions = {
"simple": "Provide clear and easy-to-understand answers using common words and short sentences. Explain concepts as if talking to a young student.",
"creative": "Give creative and engaging answers, using real-life examples and illustrations to make the content interesting and memorable.",
"normal": ""
}
instruction = style_instructions.get(settings.get("style", "normal"), "")
# Create system prompt
system_prompt = f"""
Explain the topic of "{settings['topic']}" in detail following this structure:
1. Summary: Briefly explain what the student will learn in this topic (5-6 sentences).
2. Introduction to the topic: Provide background information about the topic before breaking it down into subtopics.
3. Subtopics: Explain each subtopic in detail, providing real-life examples where necessary. For each subtopic, Describe images that could help explain the topic in detail using text instead of actual images.
Use this format: [Picture: Image description]. Dont provide more than 3 [Picture: Image description].
4. Activities: After each subtopic, provide small exercises or activities that the student can do to enhance understanding (Activities).
5. Practice questions: Provide 6-8 questions related to the topic to reinforce the student's understanding.
**Respond to all questions and instructions in Swahili.**
{instruction}
Context:
{retrieved_context}
"""
# Generate response from the model
messages = [{"role": "system", "content": system_prompt}]
outputs = app.state.pipe(messages, max_new_tokens=2000)
try:
# Extract the generated text from pipeline output
if not outputs or len(outputs) == 0:
logger.error("No output generated")
return {
"content": "Failed to generate response",
"context": retrieved_context
}
generated_messages = outputs[0]['generated_text']
if isinstance(generated_messages, list):
# Find the assistant's message
for message in generated_messages:
if message.get('role') == 'assistant':
response_content = message.get('content', '')
break
else:
logger.error("No assistant response found in messages")
return {
"content": "Failed to generate response",
"context": retrieved_context
}
else:
response_content = generated_messages
if not response_content:
logger.error("Empty response content")
return {
"content": "Failed to generate response",
"context": retrieved_context
}
# Clean up the response
response_content = response_content.strip()
# Split text into paragraphs and ensure proper spacing
paragraphs = [p.strip() for p in response_content.split('\n\n') if p.strip()]
# Handle single-line paragraphs that should be split
formatted_paragraphs = []
for paragraph in paragraphs:
# If a paragraph is too long (more than 100 chars) and doesn't have proper line breaks,
# split it into sentences and add line breaks
if len(paragraph) > 100 and '\n' not in paragraph:
sentences = [s.strip() for s in nltk.sent_tokenize(paragraph)]
formatted_paragraphs.append('\n'.join(sentences))
else:
formatted_paragraphs.append(paragraph)
# Join paragraphs with double line breaks and convert to HTML breaks
response_content = '\n\n'.join(formatted_paragraphs)
response_content = response_content.replace('\n', '<br>')
return {
"content": response_content,
"context": retrieved_context
}
except Exception as e:
logger.error(f"Error processing response: {e}")
logger.error(f"Raw output: {outputs}")
return {
"content": "Error processing response",
"context": retrieved_context
}
async def load_or_create_index():
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
os.makedirs(DATA_DIR, exist_ok=True)
os.makedirs(os.path.dirname(FAISS_INDEX_PATH), exist_ok=True)
try:
with open(DOCUMENTS_PATH, 'rb') as f:
documents = pickle.load(f)
index = faiss.read_index(FAISS_INDEX_PATH)
print("FAISS index and documents loaded successfully.")
return index, documents, embedding_model
except FileNotFoundError:
print("Index and documents not found. Proceeding to create them.")
documents = []
# Process all files (both PDFs and TXTs)
files_found = False
for file_path in ALL_FILES:
if not os.path.exists(file_path):
logger.warning(f"File not found: {file_path}")
continue
filename = os.path.basename(file_path)
logging.info(f"Processing {filename}")
text = extract_text_from_file(file_path)
if text:
files_found = True
chunks = split_text_into_chunks(text, filename)
documents.extend(chunks)
await asyncio.sleep(0)
if not files_found:
raise Exception(f"No valid text or PDF files found in the specified paths")
texts = [doc['text'] for doc in documents]
index = create_faiss_index(texts, embedding_model)
os.makedirs(os.path.dirname(DOCUMENTS_PATH), exist_ok=True)
# Save the index and documents
with open(DOCUMENTS_PATH, 'wb') as f:
pickle.dump(documents, f)
faiss.write_index(index, FAISS_INDEX_PATH)
print("FAISS index and documents saved successfully.")
return index, documents, embedding_model
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Initialize global variables in app state
@app.on_event("startup")
async def startup_event():
"""Initialize the application on startup."""
logger = logging.getLogger(__name__)
logger.info("Starting application initialization...")
# Check if CUDA is available
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {device}")
if device == "cpu":
logger.warning("GPU not detected. Model will run slower on CPU.")
# Set NLTK data path
nltk_data_dir = os.environ.get('NLTK_DATA', os.path.join(os.path.expanduser('~'), 'nltk_data'))
os.makedirs(nltk_data_dir, exist_ok=True)
# Download NLTK data
logger.info("Downloading NLTK data...")
try:
# Check if punkt is already downloaded
import nltk.data
try:
nltk.data.find('tokenizers/punkt', paths=[nltk_data_dir])
logger.info("NLTK punkt already downloaded")
except LookupError:
await asyncio.to_thread(nltk.download, 'punkt', download_dir=nltk_data_dir, quiet=True)
try:
nltk.data.find('tokenizers/punkt_tab', paths=[nltk_data_dir])
logger.info("NLTK punkt_tab already downloaded")
except LookupError:
await asyncio.to_thread(nltk.download, 'punkt_tab', download_dir=nltk_data_dir, quiet=True)
except Exception as e:
logger.error(f"Error handling NLTK data: {str(e)}")
raise Exception(f"Failed to initialize application: {str(e)}")
# Initialize the model and index
try:
app.state.pipe = pipeline(
"text-generation",
model=MODEL_ID,
trust_remote_code=True,
token=HUGGINGFACE_TOKEN,
device_map="auto",
torch_dtype=torch.float16 if device == "cuda" else torch.float32
)
faiss_index, documents, embedding_model = await load_or_create_index()
# Store these in app.state for access across the application
app.state.faiss_index = faiss_index
app.state.documents = documents
app.state.embedding_model = embedding_model
logger.info("Application initialization completed successfully")
except Exception as e:
logger.error(f"Error initializing application: {str(e)}")
raise Exception(f"Failed to initialize application: {str(e)}")
@app.post("/generate")
async def generate_content(request: ContentRequest):
try:
logger.info(f"Generating content for grade {request.grade}, subject {request.subject}, topic {request.topic}")
# Validate inputs
if request.grade not in [3, 4]:
raise HTTPException(status_code=400, detail="Invalid grade level. Must be 3 or 4")
if request.subject.lower() not in ["math", "science"]:
raise HTTPException(status_code=400, detail="Invalid subject. Must be 'math' or 'science'")
if request.style not in ["normal", "simple", "creative"]:
raise HTTPException(status_code=400, detail="Invalid style. Must be 'normal', 'simple', or 'creative'")
# Get relevant topic files
topic_files = get_topic_files(request.grade, request.subject, request.topic)
if not topic_files:
raise HTTPException(status_code=404, detail="Topic not found for specified grade and subject")
# Create settings dictionary
settings = {
"style": request.style,
"topic": request.topic,
"grade": request.grade,
"subject": request.subject
}
response = generate_response_with_rag(
request.topic,
app.state.faiss_index,
app.state.embedding_model,
app.state.documents,
settings
)
logger.info("Content generated successfully")
return {"response": response['content']}
except Exception as e:
logger.error(f"Error generating response: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/health")
async def health_check():
try:
# Check if model is loaded
if not hasattr(app.state, "pipe"):
return {"status": "starting", "message": "Model is still loading"}
return {"status": "healthy"}
except Exception as e:
logger.error(f"Health check failed: {str(e)}")
raise HTTPException(status_code=500, detail="Internal server error")
if __name__ == "__main__":
try:
logger.info("Starting FastAPI server...")
uvicorn.run(app, host="0.0.0.0", port=8080, log_level="info")
except Exception as e:
logger.error(f"Application failed to start: {str(e)}")
raise
|