Spaces:
Running
Running
| # 借鉴了 https://github.com/GaiZhenbiao/ChuanhuChatGPT 项目 | |
| """ | |
| 该文件中主要包含三个函数 | |
| 不具备多线程能力的函数: | |
| 1. predict: 正常对话时使用,具备完备的交互功能,不可多线程 | |
| 具备多线程调用能力的函数 | |
| 2. predict_no_ui:高级实验性功能模块调用,不会实时显示在界面上,参数简单,可以多线程并行,方便实现复杂的功能逻辑 | |
| 3. predict_no_ui_long_connection:在实验过程中发现调用predict_no_ui处理长文档时,和openai的连接容易断掉,这个函数用stream的方式解决这个问题,同样支持多线程 | |
| """ | |
| import json | |
| import gradio as gr | |
| import logging | |
| import traceback | |
| import requests | |
| import importlib | |
| # config_private.py放自己的秘密如API和代理网址 | |
| # 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件 | |
| from toolbox import get_conf | |
| proxies, API_URL, API_KEY, TIMEOUT_SECONDS, MAX_RETRY, LLM_MODEL = \ | |
| get_conf('proxies', 'API_URL', 'API_KEY', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'LLM_MODEL') | |
| timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \ | |
| '网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。' | |
| def get_full_error(chunk, stream_response): | |
| """ | |
| 获取完整的从Openai返回的报错 | |
| """ | |
| while True: | |
| try: | |
| chunk += next(stream_response) | |
| except: | |
| break | |
| return chunk | |
| def predict_no_ui(inputs, top_p, temperature, history=[], sys_prompt=""): | |
| """ | |
| 发送至chatGPT,等待回复,一次性完成,不显示中间过程。 | |
| predict函数的简化版。 | |
| 用于payload比较大的情况,或者用于实现多线、带嵌套的复杂功能。 | |
| inputs 是本次问询的输入 | |
| top_p, temperature是chatGPT的内部调优参数 | |
| history 是之前的对话列表 | |
| (注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误,然后raise ConnectionAbortedError) | |
| """ | |
| headers, payload = generate_payload(inputs, top_p, temperature, history, system_prompt=sys_prompt, stream=False) | |
| retry = 0 | |
| while True: | |
| try: | |
| # make a POST request to the API endpoint, stream=False | |
| response = requests.post(API_URL, headers=headers, proxies=proxies, | |
| json=payload, stream=False, timeout=TIMEOUT_SECONDS*2); break | |
| except requests.exceptions.ReadTimeout as e: | |
| retry += 1 | |
| traceback.print_exc() | |
| if retry > MAX_RETRY: raise TimeoutError | |
| if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……') | |
| try: | |
| result = json.loads(response.text)["choices"][0]["message"]["content"] | |
| return result | |
| except Exception as e: | |
| if "choices" not in response.text: print(response.text) | |
| raise ConnectionAbortedError("Json解析不合常规,可能是文本过长" + response.text) | |
| def predict_no_ui_long_connection(inputs, top_p, temperature, history=[], sys_prompt="", observe_window=None): | |
| """ | |
| 发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免有人中途掐网线。 | |
| observe_window:用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可 | |
| """ | |
| headers, payload = generate_payload(inputs, top_p, temperature, history, system_prompt=sys_prompt, stream=True) | |
| retry = 0 | |
| while True: | |
| try: | |
| # make a POST request to the API endpoint, stream=False | |
| response = requests.post(API_URL, headers=headers, proxies=proxies, | |
| json=payload, stream=True, timeout=TIMEOUT_SECONDS); break | |
| except requests.exceptions.ReadTimeout as e: | |
| retry += 1 | |
| traceback.print_exc() | |
| if retry > MAX_RETRY: raise TimeoutError | |
| if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……') | |
| stream_response = response.iter_lines() | |
| result = '' | |
| while True: | |
| try: chunk = next(stream_response).decode() | |
| except StopIteration: break | |
| if len(chunk)==0: continue | |
| if not chunk.startswith('data:'): | |
| error_msg = get_full_error(chunk.encode('utf8'), stream_response).decode() | |
| if "reduce the length" in error_msg: | |
| raise ConnectionAbortedError("OpenAI拒绝了请求:" + error_msg) | |
| else: | |
| raise RuntimeError("OpenAI拒绝了请求:" + error_msg) | |
| json_data = json.loads(chunk.lstrip('data:'))['choices'][0] | |
| delta = json_data["delta"] | |
| if len(delta) == 0: break | |
| if "role" in delta: continue | |
| if "content" in delta: | |
| result += delta["content"] | |
| print(delta["content"], end='') | |
| if observe_window is not None: observe_window[0] += delta["content"] | |
| else: raise RuntimeError("意外Json结构:"+delta) | |
| if json_data['finish_reason'] == 'length': | |
| raise ConnectionAbortedError("正常结束,但显示Token不足。") | |
| return result | |
| def predict(inputs, top_p, temperature, chatbot=[], history=[], system_prompt='', | |
| stream = True, additional_fn=None): | |
| """ | |
| 发送至chatGPT,流式获取输出。 | |
| 用于基础的对话功能。 | |
| inputs 是本次问询的输入 | |
| top_p, temperature是chatGPT的内部调优参数 | |
| history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误) | |
| chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容 | |
| additional_fn代表点击的哪个按钮,按钮见functional.py | |
| """ | |
| if additional_fn is not None: | |
| import functional | |
| importlib.reload(functional) # 热更新prompt | |
| functional = functional.get_functionals() | |
| if "PreProcess" in functional[additional_fn]: inputs = functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话) | |
| inputs = functional[additional_fn]["Prefix"] + inputs + functional[additional_fn]["Suffix"] | |
| if stream: | |
| raw_input = inputs | |
| logging.info(f'[raw_input] {raw_input}') | |
| chatbot.append((inputs, "")) | |
| yield chatbot, history, "等待响应" | |
| headers, payload = generate_payload(inputs, top_p, temperature, history, system_prompt, stream) | |
| history.append(inputs); history.append(" ") | |
| retry = 0 | |
| while True: | |
| try: | |
| # make a POST request to the API endpoint, stream=True | |
| response = requests.post(API_URL, headers=headers, proxies=proxies, | |
| json=payload, stream=True, timeout=TIMEOUT_SECONDS);break | |
| except: | |
| retry += 1 | |
| chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg)) | |
| retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else "" | |
| yield chatbot, history, "请求超时"+retry_msg | |
| if retry > MAX_RETRY: raise TimeoutError | |
| gpt_replying_buffer = "" | |
| is_head_of_the_stream = True | |
| if stream: | |
| stream_response = response.iter_lines() | |
| while True: | |
| chunk = next(stream_response) | |
| # print(chunk.decode()[6:]) | |
| if is_head_of_the_stream: | |
| # 数据流的第一帧不携带content | |
| is_head_of_the_stream = False; continue | |
| if chunk: | |
| try: | |
| if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0: | |
| # 判定为数据流的结束,gpt_replying_buffer也写完了 | |
| logging.info(f'[response] {gpt_replying_buffer}') | |
| break | |
| # 处理数据流的主体 | |
| chunkjson = json.loads(chunk.decode()[6:]) | |
| status_text = f"finish_reason: {chunkjson['choices'][0]['finish_reason']}" | |
| # 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出 | |
| gpt_replying_buffer = gpt_replying_buffer + json.loads(chunk.decode()[6:])['choices'][0]["delta"]["content"] | |
| history[-1] = gpt_replying_buffer | |
| chatbot[-1] = (history[-2], history[-1]) | |
| yield chatbot, history, status_text | |
| except Exception as e: | |
| traceback.print_exc() | |
| yield chatbot, history, "Json解析不合常规" | |
| chunk = get_full_error(chunk, stream_response) | |
| error_msg = chunk.decode() | |
| if "reduce the length" in error_msg: | |
| chatbot[-1] = (chatbot[-1][0], "[Local Message] Input (or history) is too long, please reduce input or clear history by refreshing this page.") | |
| history = [] # 清除历史 | |
| elif "Incorrect API key" in error_msg: | |
| chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key provided.") | |
| elif "exceeded your current quota" in error_msg: | |
| chatbot[-1] = (chatbot[-1][0], "[Local Message] You exceeded your current quota. OpenAI以账户额度不足为由,拒绝服务.") | |
| else: | |
| from toolbox import regular_txt_to_markdown | |
| tb_str = '```\n' + traceback.format_exc() + '```' | |
| chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk.decode()[4:])}") | |
| yield chatbot, history, "Json异常" + error_msg | |
| return | |
| def generate_payload(inputs, top_p, temperature, history, system_prompt, stream): | |
| """ | |
| 整合所有信息,选择LLM模型,生成http请求,为发送请求做准备 | |
| """ | |
| headers = { | |
| "Content-Type": "application/json", | |
| "Authorization": f"Bearer {API_KEY}" | |
| } | |
| conversation_cnt = len(history) // 2 | |
| messages = [{"role": "system", "content": system_prompt}] | |
| if conversation_cnt: | |
| for index in range(0, 2*conversation_cnt, 2): | |
| what_i_have_asked = {} | |
| what_i_have_asked["role"] = "user" | |
| what_i_have_asked["content"] = history[index] | |
| what_gpt_answer = {} | |
| what_gpt_answer["role"] = "assistant" | |
| what_gpt_answer["content"] = history[index+1] | |
| if what_i_have_asked["content"] != "": | |
| if what_gpt_answer["content"] == "": continue | |
| if what_gpt_answer["content"] == timeout_bot_msg: continue | |
| messages.append(what_i_have_asked) | |
| messages.append(what_gpt_answer) | |
| else: | |
| messages[-1]['content'] = what_gpt_answer['content'] | |
| what_i_ask_now = {} | |
| what_i_ask_now["role"] = "user" | |
| what_i_ask_now["content"] = inputs | |
| messages.append(what_i_ask_now) | |
| payload = { | |
| "model": LLM_MODEL, | |
| "messages": messages, | |
| "temperature": temperature, # 1.0, | |
| "top_p": top_p, # 1.0, | |
| "n": 1, | |
| "stream": stream, | |
| "presence_penalty": 0, | |
| "frequency_penalty": 0, | |
| } | |
| print(f" {LLM_MODEL} : {conversation_cnt} : {inputs}") | |
| return headers,payload | |