import json import os import os.path as osp from glob import glob from typing import Any, Dict, List, Optional, Tuple import cv2 import imageio.v3 as iio import numpy as np import torch from seva.geometry import ( align_principle_axes, similarity_from_cameras, transform_cameras, transform_points, ) def _get_rel_paths(path_dir: str) -> List[str]: """Recursively get relative paths of files in a directory.""" paths = [] for dp, _, fn in os.walk(path_dir): for f in fn: paths.append(os.path.relpath(os.path.join(dp, f), path_dir)) return paths class BaseParser(object): def __init__( self, data_dir: str, factor: int = 1, normalize: bool = False, test_every: Optional[int] = 8, ): self.data_dir = data_dir self.factor = factor self.normalize = normalize self.test_every = test_every self.image_names: List[str] = [] # (num_images,) self.image_paths: List[str] = [] # (num_images,) self.camtoworlds: np.ndarray = np.zeros((0, 4, 4)) # (num_images, 4, 4) self.camera_ids: List[int] = [] # (num_images,) self.Ks_dict: Dict[int, np.ndarray] = {} # Dict of camera_id -> K self.params_dict: Dict[int, np.ndarray] = {} # Dict of camera_id -> params self.imsize_dict: Dict[ int, Tuple[int, int] ] = {} # Dict of camera_id -> (width, height) self.points: np.ndarray = np.zeros((0, 3)) # (num_points, 3) self.points_err: np.ndarray = np.zeros((0,)) # (num_points,) self.points_rgb: np.ndarray = np.zeros((0, 3)) # (num_points, 3) self.point_indices: Dict[str, np.ndarray] = {} # Dict of image_name -> (M,) self.transform: np.ndarray = np.zeros((4, 4)) # (4, 4) self.mapx_dict: Dict[int, np.ndarray] = {} # Dict of camera_id -> (H, W) self.mapy_dict: Dict[int, np.ndarray] = {} # Dict of camera_id -> (H, W) self.roi_undist_dict: Dict[int, Tuple[int, int, int, int]] = ( dict() ) # Dict of camera_id -> (x, y, w, h) self.scene_scale: float = 1.0 class DirectParser(BaseParser): def __init__( self, imgs: List[np.ndarray], c2ws: np.ndarray, Ks: np.ndarray, points: Optional[np.ndarray] = None, points_rgb: Optional[np.ndarray] = None, # uint8 mono_disps: Optional[List[np.ndarray]] = None, normalize: bool = False, test_every: Optional[int] = None, ): super().__init__("", 1, normalize, test_every) self.image_names = [f"{i:06d}" for i in range(len(imgs))] self.image_paths = ["null" for _ in range(len(imgs))] self.camtoworlds = c2ws self.camera_ids = [i for i in range(len(imgs))] self.Ks_dict = {i: K for i, K in enumerate(Ks)} self.imsize_dict = { i: (img.shape[1], img.shape[0]) for i, img in enumerate(imgs) } if points is not None: self.points = points assert points_rgb is not None self.points_rgb = points_rgb self.points_err = np.zeros((len(points),)) self.imgs = imgs self.mono_disps = mono_disps # Normalize the world space. if normalize: T1 = similarity_from_cameras(self.camtoworlds) self.camtoworlds = transform_cameras(T1, self.camtoworlds) if points is not None: self.points = transform_points(T1, self.points) T2 = align_principle_axes(self.points) self.camtoworlds = transform_cameras(T2, self.camtoworlds) self.points = transform_points(T2, self.points) else: T2 = np.eye(4) self.transform = T2 @ T1 else: self.transform = np.eye(4) # size of the scene measured by cameras camera_locations = self.camtoworlds[:, :3, 3] scene_center = np.mean(camera_locations, axis=0) dists = np.linalg.norm(camera_locations - scene_center, axis=1) self.scene_scale = np.max(dists) class COLMAPParser(BaseParser): """COLMAP parser.""" def __init__( self, data_dir: str, factor: int = 1, normalize: bool = False, test_every: Optional[int] = 8, image_folder: str = "images", colmap_folder: str = "sparse/0", ): super().__init__(data_dir, factor, normalize, test_every) colmap_dir = os.path.join(data_dir, colmap_folder) assert os.path.exists( colmap_dir ), f"COLMAP directory {colmap_dir} does not exist." try: from pycolmap import SceneManager except ImportError: raise ImportError( "Please install pycolmap to use the data parsers: " " `pip install git+https://github.com/jensenz-sai/pycolmap.git@543266bc316df2fe407b3a33d454b310b1641042`" ) manager = SceneManager(colmap_dir) manager.load_cameras() manager.load_images() manager.load_points3D() # Extract extrinsic matrices in world-to-camera format. imdata = manager.images w2c_mats = [] camera_ids = [] Ks_dict = dict() params_dict = dict() imsize_dict = dict() # width, height bottom = np.array([0, 0, 0, 1]).reshape(1, 4) for k in imdata: im = imdata[k] rot = im.R() trans = im.tvec.reshape(3, 1) w2c = np.concatenate([np.concatenate([rot, trans], 1), bottom], axis=0) w2c_mats.append(w2c) # support different camera intrinsics camera_id = im.camera_id camera_ids.append(camera_id) # camera intrinsics cam = manager.cameras[camera_id] fx, fy, cx, cy = cam.fx, cam.fy, cam.cx, cam.cy K = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]]) K[:2, :] /= factor Ks_dict[camera_id] = K # Get distortion parameters. type_ = cam.camera_type if type_ == 0 or type_ == "SIMPLE_PINHOLE": params = np.empty(0, dtype=np.float32) camtype = "perspective" elif type_ == 1 or type_ == "PINHOLE": params = np.empty(0, dtype=np.float32) camtype = "perspective" if type_ == 2 or type_ == "SIMPLE_RADIAL": params = np.array([cam.k1, 0.0, 0.0, 0.0], dtype=np.float32) camtype = "perspective" elif type_ == 3 or type_ == "RADIAL": params = np.array([cam.k1, cam.k2, 0.0, 0.0], dtype=np.float32) camtype = "perspective" elif type_ == 4 or type_ == "OPENCV": params = np.array([cam.k1, cam.k2, cam.p1, cam.p2], dtype=np.float32) camtype = "perspective" elif type_ == 5 or type_ == "OPENCV_FISHEYE": params = np.array([cam.k1, cam.k2, cam.k3, cam.k4], dtype=np.float32) camtype = "fisheye" assert ( camtype == "perspective" # type: ignore ), f"Only support perspective camera model, got {type_}" params_dict[camera_id] = params # type: ignore # image size imsize_dict[camera_id] = (cam.width // factor, cam.height // factor) print( f"[Parser] {len(imdata)} images, taken by {len(set(camera_ids))} cameras." ) if len(imdata) == 0: raise ValueError("No images found in COLMAP.") if not (type_ == 0 or type_ == 1): # type: ignore print("Warning: COLMAP Camera is not PINHOLE. Images have distortion.") w2c_mats = np.stack(w2c_mats, axis=0) # Convert extrinsics to camera-to-world. camtoworlds = np.linalg.inv(w2c_mats) # Image names from COLMAP. No need for permuting the poses according to # image names anymore. image_names = [imdata[k].name for k in imdata] # Previous Nerf results were generated with images sorted by filename, # ensure metrics are reported on the same test set. inds = np.argsort(image_names) image_names = [image_names[i] for i in inds] camtoworlds = camtoworlds[inds] camera_ids = [camera_ids[i] for i in inds] # Load images. if factor > 1: image_dir_suffix = f"_{factor}" else: image_dir_suffix = "" colmap_image_dir = os.path.join(data_dir, image_folder) image_dir = os.path.join(data_dir, image_folder + image_dir_suffix) for d in [image_dir, colmap_image_dir]: if not os.path.exists(d): raise ValueError(f"Image folder {d} does not exist.") # Downsampled images may have different names vs images used for COLMAP, # so we need to map between the two sorted lists of files. colmap_files = sorted(_get_rel_paths(colmap_image_dir)) image_files = sorted(_get_rel_paths(image_dir)) colmap_to_image = dict(zip(colmap_files, image_files)) image_paths = [os.path.join(image_dir, colmap_to_image[f]) for f in image_names] # 3D points and {image_name -> [point_idx]} points = manager.points3D.astype(np.float32) # type: ignore points_err = manager.point3D_errors.astype(np.float32) # type: ignore points_rgb = manager.point3D_colors.astype(np.uint8) # type: ignore point_indices = dict() image_id_to_name = {v: k for k, v in manager.name_to_image_id.items()} for point_id, data in manager.point3D_id_to_images.items(): for image_id, _ in data: image_name = image_id_to_name[image_id] point_idx = manager.point3D_id_to_point3D_idx[point_id] point_indices.setdefault(image_name, []).append(point_idx) point_indices = { k: np.array(v).astype(np.int32) for k, v in point_indices.items() } # Normalize the world space. if normalize: T1 = similarity_from_cameras(camtoworlds) camtoworlds = transform_cameras(T1, camtoworlds) points = transform_points(T1, points) T2 = align_principle_axes(points) camtoworlds = transform_cameras(T2, camtoworlds) points = transform_points(T2, points) transform = T2 @ T1 else: transform = np.eye(4) self.image_names = image_names # List[str], (num_images,) self.image_paths = image_paths # List[str], (num_images,) self.camtoworlds = camtoworlds # np.ndarray, (num_images, 4, 4) self.camera_ids = camera_ids # List[int], (num_images,) self.Ks_dict = Ks_dict # Dict of camera_id -> K self.params_dict = params_dict # Dict of camera_id -> params self.imsize_dict = imsize_dict # Dict of camera_id -> (width, height) self.points = points # np.ndarray, (num_points, 3) self.points_err = points_err # np.ndarray, (num_points,) self.points_rgb = points_rgb # np.ndarray, (num_points, 3) self.point_indices = point_indices # Dict[str, np.ndarray], image_name -> [M,] self.transform = transform # np.ndarray, (4, 4) # undistortion self.mapx_dict = dict() self.mapy_dict = dict() self.roi_undist_dict = dict() for camera_id in self.params_dict.keys(): params = self.params_dict[camera_id] if len(params) == 0: continue # no distortion assert camera_id in self.Ks_dict, f"Missing K for camera {camera_id}" assert ( camera_id in self.params_dict ), f"Missing params for camera {camera_id}" K = self.Ks_dict[camera_id] width, height = self.imsize_dict[camera_id] K_undist, roi_undist = cv2.getOptimalNewCameraMatrix( K, params, (width, height), 0 ) mapx, mapy = cv2.initUndistortRectifyMap( K, params, None, K_undist, (width, height), cv2.CV_32FC1, # type: ignore ) self.Ks_dict[camera_id] = K_undist self.mapx_dict[camera_id] = mapx self.mapy_dict[camera_id] = mapy self.roi_undist_dict[camera_id] = roi_undist # type: ignore # size of the scene measured by cameras camera_locations = camtoworlds[:, :3, 3] scene_center = np.mean(camera_locations, axis=0) dists = np.linalg.norm(camera_locations - scene_center, axis=1) self.scene_scale = np.max(dists) class ReconfusionParser(BaseParser): def __init__(self, data_dir: str, normalize: bool = False): super().__init__(data_dir, 1, normalize, test_every=None) def get_num(p): return p.split("_")[-1].removesuffix(".json") splits_per_num_input_frames = {} num_input_frames = [ int(get_num(p)) if get_num(p).isdigit() else get_num(p) for p in sorted(glob(osp.join(data_dir, "train_test_split_*.json"))) ] for num_input_frames in num_input_frames: with open( osp.join( data_dir, f"train_test_split_{num_input_frames}.json", ) ) as f: splits_per_num_input_frames[num_input_frames] = json.load(f) self.splits_per_num_input_frames = splits_per_num_input_frames with open(osp.join(data_dir, "transforms.json")) as f: metadata = json.load(f) image_names, image_paths, camtoworlds = [], [], [] for frame in metadata["frames"]: if frame["file_path"] is None: image_path = image_name = None else: image_path = osp.join(data_dir, frame["file_path"]) image_name = osp.basename(image_path) image_paths.append(image_path) image_names.append(image_name) camtoworld = np.array(frame["transform_matrix"]) if "applied_transform" in metadata: applied_transform = np.concatenate( [metadata["applied_transform"], [[0, 0, 0, 1]]], axis=0 ) camtoworld = applied_transform @ camtoworld camtoworlds.append(camtoworld) camtoworlds = np.array(camtoworlds) camtoworlds[:, :, [1, 2]] *= -1 # Normalize the world space. if normalize: T1 = similarity_from_cameras(camtoworlds) camtoworlds = transform_cameras(T1, camtoworlds) self.transform = T1 else: self.transform = np.eye(4) self.image_names = image_names self.image_paths = image_paths self.camtoworlds = camtoworlds self.camera_ids = list(range(len(image_paths))) self.Ks_dict = { i: np.array( [ [ metadata.get("fl_x", frame.get("fl_x", None)), 0.0, metadata.get("cx", frame.get("cx", None)), ], [ 0.0, metadata.get("fl_y", frame.get("fl_y", None)), metadata.get("cy", frame.get("cy", None)), ], [0.0, 0.0, 1.0], ] ) for i, frame in enumerate(metadata["frames"]) } self.imsize_dict = { i: ( metadata.get("w", frame.get("w", None)), metadata.get("h", frame.get("h", None)), ) for i, frame in enumerate(metadata["frames"]) } # When num_input_frames is None, use all frames for both training and # testing. # self.splits_per_num_input_frames[None] = { # "train_ids": list(range(len(image_paths))), # "test_ids": list(range(len(image_paths))), # } # size of the scene measured by cameras camera_locations = camtoworlds[:, :3, 3] scene_center = np.mean(camera_locations, axis=0) dists = np.linalg.norm(camera_locations - scene_center, axis=1) self.scene_scale = np.max(dists) self.bounds = None if osp.exists(osp.join(data_dir, "bounds.npy")): self.bounds = np.load(osp.join(data_dir, "bounds.npy")) scaling = np.linalg.norm(self.transform[0, :3]) self.bounds = self.bounds / scaling class Dataset(torch.utils.data.Dataset): """A simple dataset class.""" def __init__( self, parser: BaseParser, split: str = "train", num_input_frames: Optional[int] = None, patch_size: Optional[int] = None, load_depths: bool = False, load_mono_disps: bool = False, ): self.parser = parser self.split = split self.num_input_frames = num_input_frames self.patch_size = patch_size self.load_depths = load_depths self.load_mono_disps = load_mono_disps if load_mono_disps: assert isinstance(parser, DirectParser) assert parser.mono_disps is not None if isinstance(parser, ReconfusionParser): ids_per_split = parser.splits_per_num_input_frames[num_input_frames] self.indices = ids_per_split[ "train_ids" if split == "train" else "test_ids" ] else: indices = np.arange(len(self.parser.image_names)) if split == "train": self.indices = ( indices[indices % self.parser.test_every != 0] if self.parser.test_every is not None else indices ) else: self.indices = ( indices[indices % self.parser.test_every == 0] if self.parser.test_every is not None else indices ) def __len__(self): return len(self.indices) def __getitem__(self, item: int) -> Dict[str, Any]: index = self.indices[item] if isinstance(self.parser, DirectParser): image = self.parser.imgs[index] else: image = iio.imread(self.parser.image_paths[index])[..., :3] camera_id = self.parser.camera_ids[index] K = self.parser.Ks_dict[camera_id].copy() # undistorted K params = self.parser.params_dict.get(camera_id, None) camtoworlds = self.parser.camtoworlds[index] x, y, w, h = 0, 0, image.shape[1], image.shape[0] if params is not None and len(params) > 0: # Images are distorted. Undistort them. mapx, mapy = ( self.parser.mapx_dict[camera_id], self.parser.mapy_dict[camera_id], ) image = cv2.remap(image, mapx, mapy, cv2.INTER_LINEAR) x, y, w, h = self.parser.roi_undist_dict[camera_id] image = image[y : y + h, x : x + w] if self.patch_size is not None: # Random crop. h, w = image.shape[:2] x = np.random.randint(0, max(w - self.patch_size, 1)) y = np.random.randint(0, max(h - self.patch_size, 1)) image = image[y : y + self.patch_size, x : x + self.patch_size] K[0, 2] -= x K[1, 2] -= y data = { "K": torch.from_numpy(K).float(), "camtoworld": torch.from_numpy(camtoworlds).float(), "image": torch.from_numpy(image).float(), "image_id": item, # the index of the image in the dataset } if self.load_depths: # projected points to image plane to get depths worldtocams = np.linalg.inv(camtoworlds) image_name = self.parser.image_names[index] point_indices = self.parser.point_indices[image_name] points_world = self.parser.points[point_indices] points_cam = (worldtocams[:3, :3] @ points_world.T + worldtocams[:3, 3:4]).T points_proj = (K @ points_cam.T).T points = points_proj[:, :2] / points_proj[:, 2:3] # (M, 2) depths = points_cam[:, 2] # (M,) if self.patch_size is not None: points[:, 0] -= x points[:, 1] -= y # filter out points outside the image selector = ( (points[:, 0] >= 0) & (points[:, 0] < image.shape[1]) & (points[:, 1] >= 0) & (points[:, 1] < image.shape[0]) & (depths > 0) ) points = points[selector] depths = depths[selector] data["points"] = torch.from_numpy(points).float() data["depths"] = torch.from_numpy(depths).float() if self.load_mono_disps: data["mono_disps"] = torch.from_numpy(self.parser.mono_disps[index]).float() # type: ignore return data def get_parser(parser_type: str, **kwargs) -> BaseParser: if parser_type == "colmap": parser = COLMAPParser(**kwargs) elif parser_type == "direct": parser = DirectParser(**kwargs) elif parser_type == "reconfusion": parser = ReconfusionParser(**kwargs) else: raise ValueError(f"Unknown parser type: {parser_type}") return parser