Spaces:
Running
on
L40S
Running
on
L40S
import collections | |
import json | |
import math | |
import os | |
import re | |
import threading | |
from typing import List, Literal, Optional, Tuple, Union | |
import gradio as gr | |
from colorama import Fore, Style, init | |
init(autoreset=True) | |
import imageio.v3 as iio | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import torchvision.transforms.functional as TF | |
from einops import repeat | |
from PIL import Image | |
from tqdm.auto import tqdm | |
from seva.geometry import get_camera_dist, get_plucker_coordinates, to_hom_pose | |
from seva.sampling import ( | |
EulerEDMSampler, | |
MultiviewCFG, | |
MultiviewTemporalCFG, | |
VanillaCFG, | |
) | |
from seva.utils import seed_everything | |
try: | |
# Check if version string contains 'dev' or 'nightly' | |
version = torch.__version__ | |
IS_TORCH_NIGHTLY = "dev" in version | |
if IS_TORCH_NIGHTLY: | |
torch._dynamo.config.cache_size_limit = 128 # type: ignore[assignment] | |
torch._dynamo.config.accumulated_cache_size_limit = 1024 # type: ignore[assignment] | |
torch._dynamo.config.force_parameter_static_shapes = False # type: ignore[assignment] | |
except Exception: | |
IS_TORCH_NIGHTLY = False | |
def pad_indices( | |
input_indices: List[int], | |
test_indices: List[int], | |
T: int, | |
padding_mode: Literal["first", "last", "none"] = "last", | |
): | |
assert padding_mode in ["last", "none"], "`first` padding is not supported yet." | |
if padding_mode == "last": | |
padded_indices = [ | |
i for i in range(T) if i not in (input_indices + test_indices) | |
] | |
else: | |
padded_indices = [] | |
input_selects = list(range(len(input_indices))) | |
test_selects = list(range(len(test_indices))) | |
if max(input_indices) > max(test_indices): | |
# last elem from input | |
input_selects += [input_selects[-1]] * len(padded_indices) | |
input_indices = input_indices + padded_indices | |
sorted_inds = np.argsort(input_indices) | |
input_indices = [input_indices[ind] for ind in sorted_inds] | |
input_selects = [input_selects[ind] for ind in sorted_inds] | |
else: | |
# last elem from test | |
test_selects += [test_selects[-1]] * len(padded_indices) | |
test_indices = test_indices + padded_indices | |
sorted_inds = np.argsort(test_indices) | |
test_indices = [test_indices[ind] for ind in sorted_inds] | |
test_selects = [test_selects[ind] for ind in sorted_inds] | |
if padding_mode == "last": | |
input_maps = np.array([-1] * T) | |
test_maps = np.array([-1] * T) | |
else: | |
input_maps = np.array([-1] * (len(input_indices) + len(test_indices))) | |
test_maps = np.array([-1] * (len(input_indices) + len(test_indices))) | |
input_maps[input_indices] = input_selects | |
test_maps[test_indices] = test_selects | |
return input_indices, test_indices, input_maps, test_maps | |
def assemble( | |
input, | |
test, | |
input_maps, | |
test_maps, | |
): | |
T = len(input_maps) | |
assembled = torch.zeros_like(test[-1:]).repeat_interleave(T, dim=0) | |
assembled[input_maps != -1] = input[input_maps[input_maps != -1]] | |
assembled[test_maps != -1] = test[test_maps[test_maps != -1]] | |
assert np.logical_xor(input_maps != -1, test_maps != -1).all() | |
return assembled | |
def get_resizing_factor( | |
target_shape: Tuple[int, int], # H, W | |
current_shape: Tuple[int, int], # H, W | |
cover_target: bool = True, | |
# If True, the output shape will fully cover the target shape. | |
# If No, the target shape will fully cover the output shape. | |
) -> float: | |
r_bound = target_shape[1] / target_shape[0] | |
aspect_r = current_shape[1] / current_shape[0] | |
if r_bound >= 1.0: | |
if cover_target: | |
if aspect_r >= r_bound: | |
factor = min(target_shape) / min(current_shape) | |
elif aspect_r < 1.0: | |
factor = max(target_shape) / min(current_shape) | |
else: | |
factor = max(target_shape) / max(current_shape) | |
else: | |
if aspect_r >= r_bound: | |
factor = max(target_shape) / max(current_shape) | |
elif aspect_r < 1.0: | |
factor = min(target_shape) / max(current_shape) | |
else: | |
factor = min(target_shape) / min(current_shape) | |
else: | |
if cover_target: | |
if aspect_r <= r_bound: | |
factor = min(target_shape) / min(current_shape) | |
elif aspect_r > 1.0: | |
factor = max(target_shape) / min(current_shape) | |
else: | |
factor = max(target_shape) / max(current_shape) | |
else: | |
if aspect_r <= r_bound: | |
factor = max(target_shape) / max(current_shape) | |
elif aspect_r > 1.0: | |
factor = min(target_shape) / max(current_shape) | |
else: | |
factor = min(target_shape) / min(current_shape) | |
return factor | |
def get_unique_embedder_keys_from_conditioner(conditioner): | |
keys = [x.input_key for x in conditioner.embedders if x.input_key is not None] | |
keys = [item for sublist in keys for item in sublist] # Flatten list | |
return set(keys) | |
def get_wh_with_fixed_shortest_side(w, h, size): | |
# size is smaller or equal to zero, we return original w h | |
if size is None or size <= 0: | |
return w, h | |
if w < h: | |
new_w = size | |
new_h = int(size * h / w) | |
else: | |
new_h = size | |
new_w = int(size * w / h) | |
return new_w, new_h | |
def load_img_and_K( | |
image_path_or_size: Union[str, torch.Size], | |
size: Optional[Union[int, Tuple[int, int]]], | |
scale: float = 1.0, | |
center: Tuple[float, float] = (0.5, 0.5), | |
K: torch.Tensor | None = None, | |
size_stride: int = 1, | |
center_crop: bool = False, | |
image_as_tensor: bool = True, | |
context_rgb: np.ndarray | None = None, | |
device: str = "cuda", | |
): | |
if isinstance(image_path_or_size, torch.Size): | |
image = Image.new("RGBA", image_path_or_size[::-1]) | |
else: | |
image = Image.open(image_path_or_size).convert("RGBA") | |
w, h = image.size | |
if size is None: | |
size = (w, h) | |
image = np.array(image).astype(np.float32) / 255 | |
if image.shape[-1] == 4: | |
rgb, alpha = image[:, :, :3], image[:, :, 3:] | |
if context_rgb is not None: | |
image = rgb * alpha + context_rgb * (1 - alpha) | |
else: | |
image = rgb * alpha + (1 - alpha) | |
image = image.transpose(2, 0, 1) | |
image = torch.from_numpy(image).to(dtype=torch.float32) | |
image = image.unsqueeze(0) | |
if isinstance(size, (tuple, list)): | |
# => if size is a tuple or list, we first rescale to fully cover the `size` | |
# area and then crop the `size` area from the rescale image | |
W, H = size | |
else: | |
# => if size is int, we rescale the image to fit the shortest side to size | |
# => if size is None, no rescaling is applied | |
W, H = get_wh_with_fixed_shortest_side(w, h, size) | |
W, H = ( | |
math.floor(W / size_stride + 0.5) * size_stride, | |
math.floor(H / size_stride + 0.5) * size_stride, | |
) | |
rfs = get_resizing_factor((math.floor(H * scale), math.floor(W * scale)), (h, w)) | |
resize_size = rh, rw = [int(np.ceil(rfs * s)) for s in (h, w)] | |
image = torch.nn.functional.interpolate( | |
image, resize_size, mode="area", antialias=False | |
) | |
if scale < 1.0: | |
pw = math.ceil((W - resize_size[1]) * 0.5) | |
ph = math.ceil((H - resize_size[0]) * 0.5) | |
image = F.pad(image, (pw, pw, ph, ph), "constant", 1.0) | |
cy_center = int(center[1] * image.shape[-2]) | |
cx_center = int(center[0] * image.shape[-1]) | |
if center_crop: | |
side = min(H, W) | |
ct = max(0, cy_center - side // 2) | |
cl = max(0, cx_center - side // 2) | |
ct = min(ct, image.shape[-2] - side) | |
cl = min(cl, image.shape[-1] - side) | |
image = TF.crop(image, top=ct, left=cl, height=side, width=side) | |
else: | |
ct = max(0, cy_center - H // 2) | |
cl = max(0, cx_center - W // 2) | |
ct = min(ct, image.shape[-2] - H) | |
cl = min(cl, image.shape[-1] - W) | |
image = TF.crop(image, top=ct, left=cl, height=H, width=W) | |
if K is not None: | |
K = K.clone() | |
if torch.all(K[:2, -1] >= 0) and torch.all(K[:2, -1] <= 1): | |
K[:2] *= K.new_tensor([rw, rh])[:, None] # normalized K | |
else: | |
K[:2] *= K.new_tensor([rw / w, rh / h])[:, None] # unnormalized K | |
K[:2, 2] -= K.new_tensor([cl, ct]) | |
if image_as_tensor: | |
# tensor of shape (1, 3, H, W) with values ranging from (-1, 1) | |
image = image.to(device) * 2.0 - 1.0 | |
else: | |
# PIL Image with values ranging from (0, 255) | |
image = image.permute(0, 2, 3, 1).numpy()[0] | |
image = Image.fromarray((image * 255).astype(np.uint8)) | |
return image, K | |
def transform_img_and_K( | |
image: torch.Tensor, | |
size: Union[int, Tuple[int, int]], | |
scale: float = 1.0, | |
center: Tuple[float, float] = (0.5, 0.5), | |
K: torch.Tensor | None = None, | |
size_stride: int = 1, | |
mode: str = "crop", | |
): | |
assert mode in [ | |
"crop", | |
"pad", | |
"stretch", | |
], f"mode should be one of ['crop', 'pad', 'stretch'], got {mode}" | |
h, w = image.shape[-2:] | |
if isinstance(size, (tuple, list)): | |
# => if size is a tuple or list, we first rescale to fully cover the `size` | |
# area and then crop the `size` area from the rescale image | |
W, H = size | |
else: | |
# => if size is int, we rescale the image to fit the shortest side to size | |
# => if size is None, no rescaling is applied | |
W, H = get_wh_with_fixed_shortest_side(w, h, size) | |
W, H = ( | |
math.floor(W / size_stride + 0.5) * size_stride, | |
math.floor(H / size_stride + 0.5) * size_stride, | |
) | |
if mode == "stretch": | |
rh, rw = H, W | |
else: | |
rfs = get_resizing_factor( | |
(H, W), | |
(h, w), | |
cover_target=mode != "pad", | |
) | |
(rh, rw) = [int(np.ceil(rfs * s)) for s in (h, w)] | |
rh, rw = int(rh / scale), int(rw / scale) | |
image = torch.nn.functional.interpolate( | |
image, (rh, rw), mode="area", antialias=False | |
) | |
cy_center = int(center[1] * image.shape[-2]) | |
cx_center = int(center[0] * image.shape[-1]) | |
if mode != "pad": | |
ct = max(0, cy_center - H // 2) | |
cl = max(0, cx_center - W // 2) | |
ct = min(ct, image.shape[-2] - H) | |
cl = min(cl, image.shape[-1] - W) | |
image = TF.crop(image, top=ct, left=cl, height=H, width=W) | |
pl, pt = 0, 0 | |
else: | |
pt = max(0, H // 2 - cy_center) | |
pl = max(0, W // 2 - cx_center) | |
pb = max(0, H - pt - image.shape[-2]) | |
pr = max(0, W - pl - image.shape[-1]) | |
image = TF.pad( | |
image, | |
[pl, pt, pr, pb], | |
) | |
cl, ct = 0, 0 | |
if K is not None: | |
K = K.clone() | |
# K[:, :2, 2] += K.new_tensor([pl, pt]) | |
if torch.all(K[:, :2, -1] >= 0) and torch.all(K[:, :2, -1] <= 1): | |
K[:, :2] *= K.new_tensor([rw, rh])[None, :, None] # normalized K | |
else: | |
K[:, :2] *= K.new_tensor([rw / w, rh / h])[None, :, None] # unnormalized K | |
K[:, :2, 2] += K.new_tensor([pl - cl, pt - ct]) | |
return image, K | |
lowvram_mode = False | |
def set_lowvram_mode(mode): | |
global lowvram_mode | |
lowvram_mode = mode | |
def load_model(model, device: str = "cuda"): | |
model.to(device) | |
def unload_model(model): | |
global lowvram_mode | |
if lowvram_mode: | |
model.cpu() | |
torch.cuda.empty_cache() | |
def infer_prior_stats( | |
T, | |
num_input_frames, | |
num_total_frames, | |
version_dict, | |
): | |
options = version_dict["options"] | |
chunk_strategy = options.get("chunk_strategy", "nearest") | |
T_first_pass = T[0] if isinstance(T, (list, tuple)) else T | |
T_second_pass = T[1] if isinstance(T, (list, tuple)) else T | |
# get traj_prior_c2ws for 2-pass sampling | |
if chunk_strategy.startswith("interp"): | |
# Start and end have alreay taken up two slots | |
# +1 means we need X + 1 prior frames to bound X times forwards for all test frames | |
# Tuning up `num_prior_frames_ratio` is helpful when you observe sudden jump in the | |
# generated frames due to insufficient prior frames. This option is effective for | |
# complicated trajectory and when `interp` strategy is used (usually semi-dense-view | |
# regime). Recommended range is [1.0 (default), 1.5]. | |
if num_input_frames >= options.get("num_input_semi_dense", 9): | |
num_prior_frames = ( | |
math.ceil( | |
num_total_frames | |
/ (T_second_pass - 2) | |
* options.get("num_prior_frames_ratio", 1.0) | |
) | |
+ 1 | |
) | |
if num_prior_frames + num_input_frames < T_first_pass: | |
num_prior_frames = T_first_pass - num_input_frames | |
num_prior_frames = max( | |
num_prior_frames, | |
options.get("num_prior_frames", 0), | |
) | |
T_first_pass = num_prior_frames + num_input_frames | |
if "gt" in chunk_strategy: | |
T_second_pass = T_second_pass + num_input_frames | |
# Dynamically update context window length. | |
version_dict["T"] = [T_first_pass, T_second_pass] | |
else: | |
num_prior_frames = ( | |
math.ceil( | |
num_total_frames | |
/ ( | |
T_second_pass | |
- 2 | |
- (num_input_frames if "gt" in chunk_strategy else 0) | |
) | |
* options.get("num_prior_frames_ratio", 1.0) | |
) | |
+ 1 | |
) | |
if num_prior_frames + num_input_frames < T_first_pass: | |
num_prior_frames = T_first_pass - num_input_frames | |
num_prior_frames = max( | |
num_prior_frames, | |
options.get("num_prior_frames", 0), | |
) | |
else: | |
num_prior_frames = max( | |
T_first_pass - num_input_frames, | |
options.get("num_prior_frames", 0), | |
) | |
if num_input_frames >= options.get("num_input_semi_dense", 9): | |
T_first_pass = num_prior_frames + num_input_frames | |
# Dynamically update context window length. | |
version_dict["T"] = [T_first_pass, T_second_pass] | |
return num_prior_frames | |
def infer_prior_inds( | |
c2ws, | |
num_prior_frames, | |
input_frame_indices, | |
options, | |
): | |
chunk_strategy = options.get("chunk_strategy", "nearest") | |
if chunk_strategy.startswith("interp"): | |
prior_frame_indices = np.array( | |
[i for i in range(c2ws.shape[0]) if i not in input_frame_indices] | |
) | |
prior_frame_indices = prior_frame_indices[ | |
np.ceil( | |
np.linspace( | |
0, prior_frame_indices.shape[0] - 1, num_prior_frames, endpoint=True | |
) | |
).astype(int) | |
] # having a ceil here is actually safer for corner case | |
else: | |
prior_frame_indices = [] | |
while len(prior_frame_indices) < num_prior_frames: | |
closest_distance = np.abs( | |
np.arange(c2ws.shape[0])[None] | |
- np.concatenate( | |
[np.array(input_frame_indices), np.array(prior_frame_indices)] | |
)[:, None] | |
).min(0) | |
prior_frame_indices.append(np.argsort(closest_distance)[-1]) | |
return np.sort(prior_frame_indices) | |
def compute_relative_inds( | |
source_inds, | |
target_inds, | |
): | |
assert len(source_inds) > 2 | |
# compute relative indices of target_inds within source_inds | |
relative_inds = [] | |
for ind in target_inds: | |
if ind in source_inds: | |
relative_ind = int(np.where(source_inds == ind)[0][0]) | |
elif ind < source_inds[0]: | |
# extrapolate | |
relative_ind = -((source_inds[0] - ind) / (source_inds[1] - source_inds[0])) | |
elif ind > source_inds[-1]: | |
# extrapolate | |
relative_ind = len(source_inds) + ( | |
(ind - source_inds[-1]) / (source_inds[-1] - source_inds[-2]) | |
) | |
else: | |
# interpolate | |
lower_inds = source_inds[source_inds < ind] | |
upper_inds = source_inds[source_inds > ind] | |
if len(lower_inds) > 0 and len(upper_inds) > 0: | |
lower_ind = lower_inds[-1] | |
upper_ind = upper_inds[0] | |
relative_lower_ind = int(np.where(source_inds == lower_ind)[0][0]) | |
relative_upper_ind = int(np.where(source_inds == upper_ind)[0][0]) | |
relative_ind = relative_lower_ind + (ind - lower_ind) / ( | |
upper_ind - lower_ind | |
) * (relative_upper_ind - relative_lower_ind) | |
else: | |
# Out of range | |
relative_inds.append(float("nan")) # Or some other placeholder | |
relative_inds.append(relative_ind) | |
return relative_inds | |
def find_nearest_source_inds( | |
source_c2ws, | |
target_c2ws, | |
nearest_num=1, | |
mode="translation", | |
): | |
dists = get_camera_dist(source_c2ws, target_c2ws, mode=mode).cpu().numpy() | |
sorted_inds = np.argsort(dists, axis=0).T | |
return sorted_inds[:, :nearest_num] | |
def chunk_input_and_test( | |
T, | |
input_c2ws, | |
test_c2ws, | |
input_ords, # orders | |
test_ords, # orders | |
options, | |
task: str = "img2img", | |
chunk_strategy: str = "gt", | |
gt_input_inds: list = [], | |
): | |
M, N = input_c2ws.shape[0], test_c2ws.shape[0] | |
chunks = [] | |
if chunk_strategy.startswith("gt"): | |
assert len(gt_input_inds) < T, ( | |
f"Number of gt input frames {len(gt_input_inds)} should be " | |
f"less than {T} when `gt` chunking strategy is used." | |
) | |
assert ( | |
list(range(M)) == gt_input_inds | |
), "All input_c2ws should be gt when `gt` chunking strategy is used." | |
# LEGACY CHUNKING STRATEGY | |
# num_test_per_chunk = T - len(gt_input_inds) | |
# test_inds_per_chunk = [i for i in range(T) if i not in gt_input_inds] | |
# for i in range(0, test_c2ws.shape[0], num_test_per_chunk): | |
# chunk = ["NULL"] * T | |
# for j, k in enumerate(gt_input_inds): | |
# chunk[k] = f"!{j:03d}" | |
# for j, k in enumerate( | |
# test_inds_per_chunk[: test_c2ws[i : i + num_test_per_chunk].shape[0]] | |
# ): | |
# chunk[k] = f">{i + j:03d}" | |
# chunks.append(chunk) | |
num_test_seen = 0 | |
while num_test_seen < N: | |
chunk = [f"!{i:03d}" for i in gt_input_inds] | |
if chunk_strategy != "gt" and num_test_seen > 0: | |
pseudo_num_ratio = options.get("pseudo_num_ratio", 0.33) | |
if (N - num_test_seen) >= math.floor( | |
(T - len(gt_input_inds)) * pseudo_num_ratio | |
): | |
pseudo_num = math.ceil((T - len(gt_input_inds)) * pseudo_num_ratio) | |
else: | |
pseudo_num = (T - len(gt_input_inds)) - (N - num_test_seen) | |
pseudo_num = min(pseudo_num, options.get("pseudo_num_max", 10000)) | |
if "ltr" in chunk_strategy: | |
chunk.extend( | |
[ | |
f"!{i + len(gt_input_inds):03d}" | |
for i in range(num_test_seen - pseudo_num, num_test_seen) | |
] | |
) | |
elif "nearest" in chunk_strategy: | |
source_inds = np.concatenate( | |
[ | |
find_nearest_source_inds( | |
test_c2ws[:num_test_seen], | |
test_c2ws[num_test_seen:], | |
nearest_num=1, # pseudo_num, | |
mode="rotation", | |
), | |
find_nearest_source_inds( | |
test_c2ws[:num_test_seen], | |
test_c2ws[num_test_seen:], | |
nearest_num=1, # pseudo_num, | |
mode="translation", | |
), | |
], | |
axis=1, | |
) | |
####### [HACK ALERT] keep running until pseudo num is stablized ######## | |
temp_pseudo_num = pseudo_num | |
while True: | |
nearest_source_inds = np.concatenate( | |
[ | |
np.sort( | |
[ | |
ind | |
for (ind, _) in collections.Counter( | |
[ | |
item | |
for item in source_inds[ | |
: T | |
- len(gt_input_inds) | |
- temp_pseudo_num | |
] | |
.flatten() | |
.tolist() | |
if item | |
!= ( | |
num_test_seen - 1 | |
) # exclude the last one here | |
] | |
).most_common(pseudo_num - 1) | |
], | |
).astype(int), | |
[num_test_seen - 1], # always keep the last one | |
] | |
) | |
if len(nearest_source_inds) >= temp_pseudo_num: | |
break # stablized | |
else: | |
temp_pseudo_num = len(nearest_source_inds) | |
pseudo_num = len(nearest_source_inds) | |
######################################################################## | |
chunk.extend( | |
[f"!{i + len(gt_input_inds):03d}" for i in nearest_source_inds] | |
) | |
else: | |
raise NotImplementedError( | |
f"Chunking strategy {chunk_strategy} for the first pass is not implemented." | |
) | |
chunk.extend( | |
[ | |
f">{i:03d}" | |
for i in range( | |
num_test_seen, | |
min(num_test_seen + T - len(gt_input_inds) - pseudo_num, N), | |
) | |
] | |
) | |
else: | |
chunk.extend( | |
[ | |
f">{i:03d}" | |
for i in range( | |
num_test_seen, | |
min(num_test_seen + T - len(gt_input_inds), N), | |
) | |
] | |
) | |
num_test_seen += sum([1 for c in chunk if c.startswith(">")]) | |
if len(chunk) < T: | |
chunk.extend(["NULL"] * (T - len(chunk))) | |
chunks.append(chunk) | |
elif chunk_strategy.startswith("nearest"): | |
input_imgs = np.array([f"!{i:03d}" for i in range(M)]) | |
test_imgs = np.array([f">{i:03d}" for i in range(N)]) | |
match = re.match(r"^nearest-(\d+)$", chunk_strategy) | |
if match: | |
nearest_num = int(match.group(1)) | |
assert ( | |
nearest_num < T | |
), f"Nearest number of {nearest_num} should be less than {T}." | |
source_inds = find_nearest_source_inds( | |
input_c2ws, | |
test_c2ws, | |
nearest_num=nearest_num, | |
mode="translation", # during the second pass, consider translation only is enough | |
) | |
for i in range(0, N, T - nearest_num): | |
nearest_source_inds = np.sort( | |
[ | |
ind | |
for (ind, _) in collections.Counter( | |
source_inds[i : i + T - nearest_num].flatten().tolist() | |
).most_common(nearest_num) | |
] | |
) | |
chunk = ( | |
input_imgs[nearest_source_inds].tolist() | |
+ test_imgs[i : i + T - nearest_num].tolist() | |
) | |
chunks.append(chunk + ["NULL"] * (T - len(chunk))) | |
else: | |
# do not always condition on gt cond frames | |
if "gt" not in chunk_strategy: | |
gt_input_inds = [] | |
source_inds = find_nearest_source_inds( | |
input_c2ws, | |
test_c2ws, | |
nearest_num=1, | |
mode="translation", # during the second pass, consider translation only is enough | |
)[:, 0] | |
test_inds_per_input = {} | |
for test_idx, input_idx in enumerate(source_inds): | |
if input_idx not in test_inds_per_input: | |
test_inds_per_input[input_idx] = [] | |
test_inds_per_input[input_idx].append(test_idx) | |
num_test_seen = 0 | |
chunk = input_imgs[gt_input_inds].tolist() | |
candidate_input_inds = sorted(list(test_inds_per_input.keys())) | |
while num_test_seen < N: | |
input_idx = candidate_input_inds[0] | |
test_inds = test_inds_per_input[input_idx] | |
input_is_cond = input_idx in gt_input_inds | |
prefix_inds = [] if input_is_cond else [input_idx] | |
if len(chunk) == T - len(prefix_inds) or not candidate_input_inds: | |
if chunk: | |
chunk += ["NULL"] * (T - len(chunk)) | |
chunks.append(chunk) | |
chunk = input_imgs[gt_input_inds].tolist() | |
if num_test_seen >= N: | |
break | |
continue | |
candidate_chunk = ( | |
input_imgs[prefix_inds].tolist() + test_imgs[test_inds].tolist() | |
) | |
space_left = T - len(chunk) | |
if len(candidate_chunk) <= space_left: | |
chunk.extend(candidate_chunk) | |
num_test_seen += len(test_inds) | |
candidate_input_inds.pop(0) | |
else: | |
chunk.extend(candidate_chunk[:space_left]) | |
num_input_idx = 0 if input_is_cond else 1 | |
num_test_seen += space_left - num_input_idx | |
test_inds_per_input[input_idx] = test_inds[ | |
space_left - num_input_idx : | |
] | |
if len(chunk) == T: | |
chunks.append(chunk) | |
chunk = input_imgs[gt_input_inds].tolist() | |
if chunk and chunk != input_imgs[gt_input_inds].tolist(): | |
chunks.append(chunk + ["NULL"] * (T - len(chunk))) | |
elif chunk_strategy.startswith("interp"): | |
# `interp` chunk requires ordering info | |
assert input_ords is not None and test_ords is not None, ( | |
"When using `interp` chunking strategy, ordering of input " | |
"and test frames should be provided." | |
) | |
# if chunk_strategy is `interp*`` and task is `img2trajvid*`, we will not | |
# use input views since their order info within target views is unknown | |
if "img2trajvid" in task: | |
assert ( | |
list(range(len(gt_input_inds))) == gt_input_inds | |
), "`img2trajvid` task should put `gt_input_inds` in start." | |
input_c2ws = input_c2ws[ | |
[ind for ind in range(M) if ind not in gt_input_inds] | |
] | |
input_ords = [ | |
input_ords[ind] for ind in range(M) if ind not in gt_input_inds | |
] | |
M = input_c2ws.shape[0] | |
input_ords = [0] + input_ords # this is a hack accounting for test views | |
# before the first input view | |
input_ords[-1] += 0.01 # this is a hack ensuring last test stop is included | |
# in the last forward when input_ords[-1] == test_ords[-1] | |
input_ords = np.array(input_ords)[:, None] | |
input_ords_ = np.concatenate([input_ords[1:], np.full((1, 1), np.inf)]) | |
test_ords = np.array(test_ords)[None] | |
in_stop_ranges = np.logical_and( | |
np.repeat(input_ords, N, axis=1) <= np.repeat(test_ords, M + 1, axis=0), | |
np.repeat(input_ords_, N, axis=1) > np.repeat(test_ords, M + 1, axis=0), | |
) # (M, N) | |
assert (in_stop_ranges.sum(1) <= T - 2).all(), ( | |
"More input frames need to be sampled during the first pass to ensure " | |
f"#test frames during each forard in the second pass will not exceed {T - 2}." | |
) | |
if input_ords[1, 0] <= test_ords[0, 0]: | |
assert not in_stop_ranges[0].any() | |
if input_ords[-1, 0] >= test_ords[0, -1]: | |
assert not in_stop_ranges[-1].any() | |
gt_chunk = ( | |
[f"!{i:03d}" for i in gt_input_inds] if "gt" in chunk_strategy else [] | |
) | |
chunk = gt_chunk + [] | |
# any test views before the first input views | |
if in_stop_ranges[0].any(): | |
for j, in_range in enumerate(in_stop_ranges[0]): | |
if in_range: | |
chunk.append(f">{j:03d}") | |
in_stop_ranges = in_stop_ranges[1:] | |
i = 0 | |
base_i = len(gt_input_inds) if "img2trajvid" in task else 0 | |
chunk.append(f"!{i + base_i:03d}") | |
while i < len(in_stop_ranges): | |
in_stop_range = in_stop_ranges[i] | |
if not in_stop_range.any(): | |
i += 1 | |
continue | |
input_left = i + 1 < M | |
space_left = T - len(chunk) | |
if sum(in_stop_range) + input_left <= space_left: | |
for j, in_range in enumerate(in_stop_range): | |
if in_range: | |
chunk.append(f">{j:03d}") | |
i += 1 | |
if input_left: | |
chunk.append(f"!{i + base_i:03d}") | |
else: | |
chunk += ["NULL"] * space_left | |
chunks.append(chunk) | |
chunk = gt_chunk + [f"!{i + base_i:03d}"] | |
if len(chunk) > 1: | |
chunk += ["NULL"] * (T - len(chunk)) | |
chunks.append(chunk) | |
else: | |
raise NotImplementedError | |
( | |
input_inds_per_chunk, | |
input_sels_per_chunk, | |
test_inds_per_chunk, | |
test_sels_per_chunk, | |
) = ( | |
[], | |
[], | |
[], | |
[], | |
) | |
for chunk in chunks: | |
input_inds = [ | |
int(img.removeprefix("!")) for img in chunk if img.startswith("!") | |
] | |
input_sels = [chunk.index(img) for img in chunk if img.startswith("!")] | |
test_inds = [int(img.removeprefix(">")) for img in chunk if img.startswith(">")] | |
test_sels = [chunk.index(img) for img in chunk if img.startswith(">")] | |
input_inds_per_chunk.append(input_inds) | |
input_sels_per_chunk.append(input_sels) | |
test_inds_per_chunk.append(test_inds) | |
test_sels_per_chunk.append(test_sels) | |
if options.get("sampler_verbose", True): | |
def colorize(item): | |
if item.startswith("!"): | |
return f"{Fore.RED}{item}{Style.RESET_ALL}" # Red for items starting with '!' | |
elif item.startswith(">"): | |
return f"{Fore.GREEN}{item}{Style.RESET_ALL}" # Green for items starting with '>' | |
return item # Default color if neither '!' nor '>' | |
print("\nchunks:") | |
for chunk in chunks: | |
print(", ".join(colorize(item) for item in chunk)) | |
return ( | |
chunks, | |
input_inds_per_chunk, # ordering of input in raw sequence | |
input_sels_per_chunk, # ordering of input in one-forward sequence of length T | |
test_inds_per_chunk, # ordering of test in raw sequence | |
test_sels_per_chunk, # oredering of test in one-forward sequence of length T | |
) | |
def is_k_in_dict(d, k): | |
return any(map(lambda x: x.startswith(k), d.keys())) | |
def get_k_from_dict(d, k): | |
media_d = {} | |
for key, value in d.items(): | |
if key == k: | |
return value | |
if key.startswith(k): | |
media = key.split("/")[-1] | |
if media == "raw": | |
return value | |
media_d[media] = value | |
if len(media_d) == 0: | |
return torch.tensor([]) | |
assert ( | |
len(media_d) == 1 | |
), f"multiple media found in {d} for key {k}: {media_d.keys()}" | |
return media_d[media] | |
def update_kv_for_dict(d, k, v): | |
for key in d.keys(): | |
if key.startswith(k): | |
d[key] = v | |
return d | |
def extend_dict(ds, d): | |
for key in d.keys(): | |
if key in ds: | |
ds[key] = torch.cat([ds[key], d[key]], 0) | |
else: | |
ds[key] = d[key] | |
return ds | |
def replace_or_include_input_for_dict( | |
samples, | |
test_indices, | |
imgs, | |
c2w, | |
K, | |
): | |
samples_new = {} | |
for sample, value in samples.items(): | |
if "rgb" in sample: | |
imgs[test_indices] = ( | |
value[test_indices] if value.shape[0] == imgs.shape[0] else value | |
).to(device=imgs.device, dtype=imgs.dtype) | |
samples_new[sample] = imgs | |
elif "c2w" in sample: | |
c2w[test_indices] = ( | |
value[test_indices] if value.shape[0] == c2w.shape[0] else value | |
).to(device=c2w.device, dtype=c2w.dtype) | |
samples_new[sample] = c2w | |
elif "intrinsics" in sample: | |
K[test_indices] = ( | |
value[test_indices] if value.shape[0] == K.shape[0] else value | |
).to(device=K.device, dtype=K.dtype) | |
samples_new[sample] = K | |
else: | |
samples_new[sample] = value | |
return samples_new | |
def decode_output( | |
samples, | |
T, | |
indices=None, | |
): | |
# decode model output into dict if it is not | |
if isinstance(samples, dict): | |
# model with postprocessor and outputs dict | |
for sample, value in samples.items(): | |
if isinstance(value, torch.Tensor): | |
value = value.detach().cpu() | |
elif isinstance(value, np.ndarray): | |
value = torch.from_numpy(value) | |
else: | |
value = torch.tensor(value) | |
if indices is not None and value.shape[0] == T: | |
value = value[indices] | |
samples[sample] = value | |
else: | |
# model without postprocessor and outputs tensor (rgb) | |
samples = samples.detach().cpu() | |
if indices is not None and samples.shape[0] == T: | |
samples = samples[indices] | |
samples = {"samples-rgb/image": samples} | |
return samples | |
def save_output( | |
samples, | |
save_path, | |
video_save_fps=2, | |
): | |
os.makedirs(save_path, exist_ok=True) | |
for sample in samples: | |
media_type = "video" | |
if "/" in sample: | |
sample_, media_type = sample.split("/") | |
else: | |
sample_ = sample | |
value = samples[sample] | |
if isinstance(value, torch.Tensor): | |
value = value.detach().cpu() | |
elif isinstance(value, np.ndarray): | |
value = torch.from_numpy(value) | |
else: | |
value = torch.tensor(value) | |
if media_type == "image": | |
value = (value.permute(0, 2, 3, 1) + 1) / 2.0 | |
value = (value * 255).clamp(0, 255).to(torch.uint8) | |
iio.imwrite( | |
os.path.join(save_path, f"{sample_}.mp4") | |
if sample_ | |
else f"{save_path}.mp4", | |
value, | |
fps=video_save_fps, | |
macro_block_size=1, | |
ffmpeg_log_level="error", | |
) | |
os.makedirs(os.path.join(save_path, sample_), exist_ok=True) | |
for i, s in enumerate(value): | |
iio.imwrite( | |
os.path.join(save_path, sample_, f"{i:03d}.png"), | |
s, | |
) | |
elif media_type == "video": | |
value = (value.permute(0, 2, 3, 1) + 1) / 2.0 | |
value = (value * 255).clamp(0, 255).to(torch.uint8) | |
iio.imwrite( | |
os.path.join(save_path, f"{sample_}.mp4"), | |
value, | |
fps=video_save_fps, | |
macro_block_size=1, | |
ffmpeg_log_level="error", | |
) | |
elif media_type == "raw": | |
torch.save( | |
value, | |
os.path.join(save_path, f"{sample_}.pt"), | |
) | |
else: | |
pass | |
def create_transforms_simple(save_path, img_paths, img_whs, c2ws, Ks): | |
import os.path as osp | |
out_frames = [] | |
for img_path, img_wh, c2w, K in zip(img_paths, img_whs, c2ws, Ks): | |
out_frame = { | |
"fl_x": K[0][0].item(), | |
"fl_y": K[1][1].item(), | |
"cx": K[0][2].item(), | |
"cy": K[1][2].item(), | |
"w": img_wh[0].item(), | |
"h": img_wh[1].item(), | |
"file_path": f"./{osp.relpath(img_path, start=save_path)}" | |
if img_path is not None | |
else None, | |
"transform_matrix": c2w.tolist(), | |
} | |
out_frames.append(out_frame) | |
out = { | |
# "camera_model": "PINHOLE", | |
"orientation_override": "none", | |
"frames": out_frames, | |
} | |
with open(osp.join(save_path, "transforms.json"), "w") as of: | |
json.dump(out, of, indent=5) | |
class GradioTrackedSampler(EulerEDMSampler): | |
""" | |
A thin wrapper around the EulerEDMSampler that allows tracking progress and | |
aborting sampling for gradio demo. | |
""" | |
def __init__(self, abort_event: threading.Event, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.abort_event = abort_event | |
def __call__( # type: ignore | |
self, | |
denoiser, | |
x: torch.Tensor, | |
scale: float | torch.Tensor, | |
cond: dict, | |
uc: dict | None = None, | |
num_steps: int | None = None, | |
verbose: bool = True, | |
global_pbar: gr.Progress | None = None, | |
**guider_kwargs, | |
) -> torch.Tensor | None: | |
uc = cond if uc is None else uc | |
x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop( | |
x, | |
cond, | |
uc, | |
num_steps, | |
) | |
for i in self.get_sigma_gen(num_sigmas, verbose=verbose): | |
gamma = ( | |
min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1) | |
if self.s_tmin <= sigmas[i] <= self.s_tmax | |
else 0.0 | |
) | |
x = self.sampler_step( | |
s_in * sigmas[i], | |
s_in * sigmas[i + 1], | |
denoiser, | |
x, | |
scale, | |
cond, | |
uc, | |
gamma, | |
**guider_kwargs, | |
) | |
# Allow tracking progress in gradio demo. | |
if global_pbar is not None: | |
global_pbar.update() | |
# Allow aborting sampling in gradio demo. | |
if self.abort_event.is_set(): | |
return None | |
return x | |
def create_samplers( | |
guider_types: int | list[int], | |
discretization, | |
num_frames: list[int] | None, | |
num_steps: int, | |
cfg_min: float = 1.0, | |
device: str | torch.device = "cuda", | |
abort_event: threading.Event | None = None, | |
): | |
guider_mapping = { | |
0: VanillaCFG, | |
1: MultiviewCFG, | |
2: MultiviewTemporalCFG, | |
} | |
samplers = [] | |
if not isinstance(guider_types, (list, tuple)): | |
guider_types = [guider_types] | |
for i, guider_type in enumerate(guider_types): | |
if guider_type not in guider_mapping: | |
raise ValueError( | |
f"Invalid guider type {guider_type}. Must be one of {list(guider_mapping.keys())}" | |
) | |
guider_cls = guider_mapping[guider_type] | |
guider_args = () | |
if guider_type > 0: | |
guider_args += (cfg_min,) | |
if guider_type == 2: | |
assert num_frames is not None | |
guider_args = (num_frames[i], cfg_min) | |
guider = guider_cls(*guider_args) | |
if abort_event is not None: | |
sampler = GradioTrackedSampler( | |
abort_event, | |
discretization=discretization, | |
guider=guider, | |
num_steps=num_steps, | |
s_churn=0.0, | |
s_tmin=0.0, | |
s_tmax=999.0, | |
s_noise=1.0, | |
verbose=True, | |
device=device, | |
) | |
else: | |
sampler = EulerEDMSampler( | |
discretization=discretization, | |
guider=guider, | |
num_steps=num_steps, | |
s_churn=0.0, | |
s_tmin=0.0, | |
s_tmax=999.0, | |
s_noise=1.0, | |
verbose=True, | |
device=device, | |
) | |
samplers.append(sampler) | |
return samplers | |
def get_value_dict( | |
curr_imgs, | |
curr_imgs_clip, | |
curr_input_frame_indices, | |
curr_c2ws, | |
curr_Ks, | |
curr_input_camera_indices, | |
all_c2ws, | |
camera_scale=2.0, | |
): | |
assert sorted(curr_input_camera_indices) == sorted( | |
range(len(curr_input_camera_indices)) | |
) | |
H, W, T, F = curr_imgs.shape[-2], curr_imgs.shape[-1], len(curr_imgs), 8 | |
value_dict = {} | |
value_dict["cond_frames_without_noise"] = curr_imgs_clip[curr_input_frame_indices] | |
value_dict["cond_frames"] = curr_imgs + 0.0 * torch.randn_like(curr_imgs) | |
value_dict["cond_frames_mask"] = torch.zeros(T, dtype=torch.bool) | |
value_dict["cond_frames_mask"][curr_input_frame_indices] = True | |
value_dict["cond_aug"] = 0.0 | |
c2w = to_hom_pose(curr_c2ws.float()) | |
w2c = torch.linalg.inv(c2w) | |
# camera centering | |
ref_c2ws = all_c2ws | |
camera_dist_2med = torch.norm( | |
ref_c2ws[:, :3, 3] - ref_c2ws[:, :3, 3].median(0, keepdim=True).values, | |
dim=-1, | |
) | |
valid_mask = camera_dist_2med <= torch.clamp( | |
torch.quantile(camera_dist_2med, 0.97) * 10, | |
max=1e6, | |
) | |
c2w[:, :3, 3] -= ref_c2ws[valid_mask, :3, 3].mean(0, keepdim=True) | |
w2c = torch.linalg.inv(c2w) | |
# camera normalization | |
camera_dists = c2w[:, :3, 3].clone() | |
translation_scaling_factor = ( | |
camera_scale | |
if torch.isclose( | |
torch.norm(camera_dists[0]), | |
torch.zeros(1), | |
atol=1e-5, | |
).any() | |
else (camera_scale / torch.norm(camera_dists[0])) | |
) | |
w2c[:, :3, 3] *= translation_scaling_factor | |
c2w[:, :3, 3] *= translation_scaling_factor | |
value_dict["plucker_coordinate"], _ = get_plucker_coordinates( | |
extrinsics_src=w2c[0], | |
extrinsics=w2c, | |
intrinsics=curr_Ks.float().clone(), | |
mode="plucker", | |
rel_zero_translation=True, | |
target_size=(H // F, W // F), | |
return_grid_cam=True, | |
) | |
value_dict["c2w"] = c2w | |
value_dict["K"] = curr_Ks | |
value_dict["camera_mask"] = torch.zeros(T, dtype=torch.bool) | |
value_dict["camera_mask"][curr_input_camera_indices] = True | |
return value_dict | |
def do_sample( | |
model, | |
ae, | |
conditioner, | |
denoiser, | |
sampler, | |
value_dict, | |
H, | |
W, | |
C, | |
F, | |
T, | |
cfg, | |
encoding_t=1, | |
decoding_t=1, | |
verbose=True, | |
global_pbar=None, | |
**_, | |
): | |
imgs = value_dict["cond_frames"].to("cuda") | |
input_masks = value_dict["cond_frames_mask"].to("cuda") | |
pluckers = value_dict["plucker_coordinate"].to("cuda") | |
num_samples = [1, T] | |
with torch.inference_mode(), torch.autocast("cuda"): | |
load_model(ae) | |
load_model(conditioner) | |
latents = torch.nn.functional.pad( | |
ae.encode(imgs[input_masks], encoding_t), (0, 0, 0, 0, 0, 1), value=1.0 | |
) | |
c_crossattn = repeat(conditioner(imgs[input_masks]).mean(0), "d -> n 1 d", n=T) | |
uc_crossattn = torch.zeros_like(c_crossattn) | |
c_replace = latents.new_zeros(T, *latents.shape[1:]) | |
c_replace[input_masks] = latents | |
uc_replace = torch.zeros_like(c_replace) | |
c_concat = torch.cat( | |
[ | |
repeat( | |
input_masks, | |
"n -> n 1 h w", | |
h=pluckers.shape[2], | |
w=pluckers.shape[3], | |
), | |
pluckers, | |
], | |
1, | |
) | |
uc_concat = torch.cat( | |
[pluckers.new_zeros(T, 1, *pluckers.shape[-2:]), pluckers], 1 | |
) | |
c_dense_vector = pluckers | |
uc_dense_vector = c_dense_vector | |
# TODO(hangg): concat and dense are problematic. | |
c = { | |
"crossattn": c_crossattn, | |
"replace": c_replace, | |
"concat": c_concat, | |
"dense_vector": c_dense_vector, | |
} | |
uc = { | |
"crossattn": uc_crossattn, | |
"replace": uc_replace, | |
"concat": uc_concat, | |
"dense_vector": uc_dense_vector, | |
} | |
unload_model(ae) | |
unload_model(conditioner) | |
additional_model_inputs = {"num_frames": T} | |
additional_sampler_inputs = { | |
"c2w": value_dict["c2w"].to("cuda"), | |
"K": value_dict["K"].to("cuda"), | |
"input_frame_mask": value_dict["cond_frames_mask"].to("cuda"), | |
} | |
if global_pbar is not None: | |
additional_sampler_inputs["global_pbar"] = global_pbar | |
shape = (math.prod(num_samples), C, H // F, W // F) | |
randn = torch.randn(shape).to("cuda") | |
load_model(model) | |
samples_z = sampler( | |
lambda input, sigma, c: denoiser( | |
model, | |
input, | |
sigma, | |
c, | |
**additional_model_inputs, | |
), | |
randn, | |
scale=cfg, | |
cond=c, | |
uc=uc, | |
verbose=verbose, | |
**additional_sampler_inputs, | |
) | |
if samples_z is None: | |
return | |
unload_model(model) | |
load_model(ae) | |
samples = ae.decode(samples_z, decoding_t) | |
unload_model(ae) | |
return samples | |
def run_one_scene( | |
task, | |
version_dict, | |
model, | |
ae, | |
conditioner, | |
denoiser, | |
image_cond, | |
camera_cond, | |
save_path, | |
use_traj_prior, | |
traj_prior_Ks, | |
traj_prior_c2ws, | |
seed=23, | |
gradio=False, | |
abort_event=None, | |
first_pass_pbar=None, | |
second_pass_pbar=None, | |
): | |
H, W, T, C, F, options = ( | |
version_dict["H"], | |
version_dict["W"], | |
version_dict["T"], | |
version_dict["C"], | |
version_dict["f"], | |
version_dict["options"], | |
) | |
if isinstance(image_cond, str): | |
image_cond = {"img": [image_cond]} | |
imgs_clip, imgs, img_size = [], [], None | |
for i, (img, K) in enumerate(zip(image_cond["img"], camera_cond["K"])): | |
if isinstance(img, str) or img is None: | |
img, K = load_img_and_K(img or img_size, None, K=K, device="cpu") # type: ignore | |
img_size = img.shape[-2:] | |
if options.get("L_short", -1) == -1: | |
img, K = transform_img_and_K( | |
img, | |
(W, H), | |
K=K[None], | |
mode=( | |
options.get("transform_input", "crop") | |
if i in image_cond["input_indices"] | |
else options.get("transform_target", "crop") | |
), | |
scale=( | |
1.0 | |
if i in image_cond["input_indices"] | |
else options.get("transform_scale", 1.0) | |
), | |
) | |
else: | |
downsample = 3 | |
assert options["L_short"] % F * 2**downsample == 0, ( | |
"Short side of the image should be divisible by " | |
f"F*2**{downsample}={F * 2**downsample}." | |
) | |
img, K = transform_img_and_K( | |
img, | |
options["L_short"], | |
K=K[None], | |
size_stride=F * 2**downsample, | |
mode=( | |
options.get("transform_input", "crop") | |
if i in image_cond["input_indices"] | |
else options.get("transform_target", "crop") | |
), | |
scale=( | |
1.0 | |
if i in image_cond["input_indices"] | |
else options.get("transform_scale", 1.0) | |
), | |
) | |
version_dict["W"] = W = img.shape[-1] | |
version_dict["H"] = H = img.shape[-2] | |
K = K[0] | |
K[0] /= W | |
K[1] /= H | |
camera_cond["K"][i] = K | |
img_clip = img | |
elif isinstance(img, np.ndarray): | |
img_size = torch.Size(img.shape[:2]) | |
img = torch.as_tensor(img).permute(2, 0, 1) | |
img = img.unsqueeze(0) | |
img = img / 255.0 * 2.0 - 1.0 | |
if not gradio: | |
img, K = transform_img_and_K(img, (W, H), K=K[None]) | |
assert K is not None | |
K = K[0] | |
K[0] /= W | |
K[1] /= H | |
camera_cond["K"][i] = K | |
img_clip = img | |
else: | |
assert ( | |
False | |
), f"Variable `img` got {type(img)} type which is not supported!!!" | |
imgs_clip.append(img_clip) | |
imgs.append(img) | |
imgs_clip = torch.cat(imgs_clip, dim=0) | |
imgs = torch.cat(imgs, dim=0) | |
if traj_prior_Ks is not None: | |
assert img_size is not None | |
for i, prior_k in enumerate(traj_prior_Ks): | |
img, prior_k = load_img_and_K(img_size, None, K=prior_k, device="cpu") # type: ignore | |
img, prior_k = transform_img_and_K( | |
img, | |
(W, H), | |
K=prior_k[None], | |
mode=options.get( | |
"transform_target", "crop" | |
), # mode for prior is always same as target | |
scale=options.get( | |
"transform_scale", 1.0 | |
), # scale for prior is always same as target | |
) | |
prior_k = prior_k[0] | |
prior_k[0] /= W | |
prior_k[1] /= H | |
traj_prior_Ks[i] = prior_k | |
options["num_frames"] = T | |
discretization = denoiser.discretization | |
torch.cuda.empty_cache() | |
seed_everything(seed) | |
# Get Data | |
input_indices = image_cond["input_indices"] | |
input_imgs = imgs[input_indices] | |
input_imgs_clip = imgs_clip[input_indices] | |
input_c2ws = camera_cond["c2w"][input_indices] | |
input_Ks = camera_cond["K"][input_indices] | |
test_indices = [i for i in range(len(imgs)) if i not in input_indices] | |
test_imgs = imgs[test_indices] | |
test_imgs_clip = imgs_clip[test_indices] | |
test_c2ws = camera_cond["c2w"][test_indices] | |
test_Ks = camera_cond["K"][test_indices] | |
if options.get("save_input", True): | |
save_output( | |
{"/image": input_imgs}, | |
save_path=os.path.join(save_path, "input"), | |
video_save_fps=2, | |
) | |
if not use_traj_prior: | |
chunk_strategy = options.get("chunk_strategy", "gt") | |
( | |
_, | |
input_inds_per_chunk, | |
input_sels_per_chunk, | |
test_inds_per_chunk, | |
test_sels_per_chunk, | |
) = chunk_input_and_test( | |
T, | |
input_c2ws, | |
test_c2ws, | |
input_indices, | |
test_indices, | |
options=options, | |
task=task, | |
chunk_strategy=chunk_strategy, | |
gt_input_inds=list(range(input_c2ws.shape[0])), | |
) | |
print( | |
f"One pass - chunking with `{chunk_strategy}` strategy: total " | |
f"{len(input_inds_per_chunk)} forward(s) ..." | |
) | |
all_samples = {} | |
all_test_inds = [] | |
for i, ( | |
chunk_input_inds, | |
chunk_input_sels, | |
chunk_test_inds, | |
chunk_test_sels, | |
) in tqdm( | |
enumerate( | |
zip( | |
input_inds_per_chunk, | |
input_sels_per_chunk, | |
test_inds_per_chunk, | |
test_sels_per_chunk, | |
) | |
), | |
total=len(input_inds_per_chunk), | |
leave=False, | |
): | |
( | |
curr_input_sels, | |
curr_test_sels, | |
curr_input_maps, | |
curr_test_maps, | |
) = pad_indices( | |
chunk_input_sels, | |
chunk_test_sels, | |
T=T, | |
padding_mode=options.get("t_padding_mode", "last"), | |
) | |
curr_imgs, curr_imgs_clip, curr_c2ws, curr_Ks = [ | |
assemble( | |
input=x[chunk_input_inds], | |
test=y[chunk_test_inds], | |
input_maps=curr_input_maps, | |
test_maps=curr_test_maps, | |
) | |
for x, y in zip( | |
[ | |
torch.cat( | |
[ | |
input_imgs, | |
get_k_from_dict(all_samples, "samples-rgb").to( | |
input_imgs.device | |
), | |
], | |
dim=0, | |
), | |
torch.cat( | |
[ | |
input_imgs_clip, | |
get_k_from_dict(all_samples, "samples-rgb").to( | |
input_imgs.device | |
), | |
], | |
dim=0, | |
), | |
torch.cat([input_c2ws, test_c2ws[all_test_inds]], dim=0), | |
torch.cat([input_Ks, test_Ks[all_test_inds]], dim=0), | |
], # procedually append generated prior views to the input views | |
[test_imgs, test_imgs_clip, test_c2ws, test_Ks], | |
) | |
] | |
value_dict = get_value_dict( | |
curr_imgs.to("cuda"), | |
curr_imgs_clip.to("cuda"), | |
curr_input_sels | |
+ [ | |
sel | |
for (ind, sel) in zip( | |
np.array(chunk_test_inds)[curr_test_maps[curr_test_maps != -1]], | |
curr_test_sels, | |
) | |
if test_indices[ind] in image_cond["input_indices"] | |
], | |
curr_c2ws, | |
curr_Ks, | |
curr_input_sels | |
+ [ | |
sel | |
for (ind, sel) in zip( | |
np.array(chunk_test_inds)[curr_test_maps[curr_test_maps != -1]], | |
curr_test_sels, | |
) | |
if test_indices[ind] in camera_cond["input_indices"] | |
], | |
all_c2ws=camera_cond["c2w"], | |
) | |
samplers = create_samplers( | |
options["guider_types"], | |
discretization, | |
[len(curr_imgs)], | |
options["num_steps"], | |
options["cfg_min"], | |
abort_event=abort_event, | |
) | |
assert len(samplers) == 1 | |
samples = do_sample( | |
model, | |
ae, | |
conditioner, | |
denoiser, | |
samplers[0], | |
value_dict, | |
H, | |
W, | |
C, | |
F, | |
T=len(curr_imgs), | |
cfg=( | |
options["cfg"][0] | |
if isinstance(options["cfg"], (list, tuple)) | |
else options["cfg"] | |
), | |
**{k: options[k] for k in options if k not in ["cfg", "T"]}, | |
) | |
samples = decode_output( | |
samples, len(curr_imgs), chunk_test_sels | |
) # decode into dict | |
if options.get("save_first_pass", False): | |
save_output( | |
replace_or_include_input_for_dict( | |
samples, | |
chunk_test_sels, | |
curr_imgs, | |
curr_c2ws, | |
curr_Ks, | |
), | |
save_path=os.path.join(save_path, "first-pass", f"forward_{i}"), | |
video_save_fps=2, | |
) | |
extend_dict(all_samples, samples) | |
all_test_inds.extend(chunk_test_inds) | |
else: | |
assert traj_prior_c2ws is not None, ( | |
"`traj_prior_c2ws` should be set when using 2-pass sampling. One " | |
"potential reason is that the amount of input frames is larger than " | |
"T. Set `num_prior_frames` manually to overwrite the infered stats." | |
) | |
traj_prior_c2ws = torch.as_tensor( | |
traj_prior_c2ws, | |
device=input_c2ws.device, | |
dtype=input_c2ws.dtype, | |
) | |
if traj_prior_Ks is None: | |
traj_prior_Ks = test_Ks[:1].repeat_interleave( | |
traj_prior_c2ws.shape[0], dim=0 | |
) | |
traj_prior_imgs = imgs.new_zeros(traj_prior_c2ws.shape[0], *imgs.shape[1:]) | |
traj_prior_imgs_clip = imgs_clip.new_zeros( | |
traj_prior_c2ws.shape[0], *imgs_clip.shape[1:] | |
) | |
# ---------------------------------- first pass ---------------------------------- | |
T_first_pass = T[0] if isinstance(T, (list, tuple)) else T | |
T_second_pass = T[1] if isinstance(T, (list, tuple)) else T | |
chunk_strategy_first_pass = options.get( | |
"chunk_strategy_first_pass", "gt-nearest" | |
) | |
( | |
_, | |
input_inds_per_chunk, | |
input_sels_per_chunk, | |
prior_inds_per_chunk, | |
prior_sels_per_chunk, | |
) = chunk_input_and_test( | |
T_first_pass, | |
input_c2ws, | |
traj_prior_c2ws, | |
input_indices, | |
image_cond["prior_indices"], | |
options=options, | |
task=task, | |
chunk_strategy=chunk_strategy_first_pass, | |
gt_input_inds=list(range(input_c2ws.shape[0])), | |
) | |
print( | |
f"Two passes (first) - chunking with `{chunk_strategy_first_pass}` strategy: total " | |
f"{len(input_inds_per_chunk)} forward(s) ..." | |
) | |
all_samples = {} | |
all_prior_inds = [] | |
for i, ( | |
chunk_input_inds, | |
chunk_input_sels, | |
chunk_prior_inds, | |
chunk_prior_sels, | |
) in tqdm( | |
enumerate( | |
zip( | |
input_inds_per_chunk, | |
input_sels_per_chunk, | |
prior_inds_per_chunk, | |
prior_sels_per_chunk, | |
) | |
), | |
total=len(input_inds_per_chunk), | |
leave=False, | |
): | |
( | |
curr_input_sels, | |
curr_prior_sels, | |
curr_input_maps, | |
curr_prior_maps, | |
) = pad_indices( | |
chunk_input_sels, | |
chunk_prior_sels, | |
T=T_first_pass, | |
padding_mode=options.get("t_padding_mode", "last"), | |
) | |
curr_imgs, curr_imgs_clip, curr_c2ws, curr_Ks = [ | |
assemble( | |
input=x[chunk_input_inds], | |
test=y[chunk_prior_inds], | |
input_maps=curr_input_maps, | |
test_maps=curr_prior_maps, | |
) | |
for x, y in zip( | |
[ | |
torch.cat( | |
[ | |
input_imgs, | |
get_k_from_dict(all_samples, "samples-rgb").to( | |
input_imgs.device | |
), | |
], | |
dim=0, | |
), | |
torch.cat( | |
[ | |
input_imgs_clip, | |
get_k_from_dict(all_samples, "samples-rgb").to( | |
input_imgs.device | |
), | |
], | |
dim=0, | |
), | |
torch.cat([input_c2ws, traj_prior_c2ws[all_prior_inds]], dim=0), | |
torch.cat([input_Ks, traj_prior_Ks[all_prior_inds]], dim=0), | |
], # procedually append generated prior views to the input views | |
[ | |
traj_prior_imgs, | |
traj_prior_imgs_clip, | |
traj_prior_c2ws, | |
traj_prior_Ks, | |
], | |
) | |
] | |
value_dict = get_value_dict( | |
curr_imgs.to("cuda"), | |
curr_imgs_clip.to("cuda"), | |
curr_input_sels, | |
curr_c2ws, | |
curr_Ks, | |
list(range(T_first_pass)), | |
all_c2ws=camera_cond["c2w"], # traj_prior_c2ws, | |
) | |
samplers = create_samplers( | |
options["guider_types"], | |
discretization, | |
[T_first_pass, T_second_pass], | |
options["num_steps"], | |
options["cfg_min"], | |
abort_event=abort_event, | |
) | |
samples = do_sample( | |
model, | |
ae, | |
conditioner, | |
denoiser, | |
( | |
samplers[1] | |
if len(samplers) > 1 | |
and options.get("ltr_first_pass", False) | |
and chunk_strategy_first_pass != "gt" | |
and i > 0 | |
else samplers[0] | |
), | |
value_dict, | |
H, | |
W, | |
C, | |
F, | |
cfg=( | |
options["cfg"][0] | |
if isinstance(options["cfg"], (list, tuple)) | |
else options["cfg"] | |
), | |
T=T_first_pass, | |
global_pbar=first_pass_pbar, | |
**{k: options[k] for k in options if k not in ["cfg", "T", "sampler"]}, | |
) | |
if samples is None: | |
return | |
samples = decode_output( | |
samples, T_first_pass, chunk_prior_sels | |
) # decode into dict | |
extend_dict(all_samples, samples) | |
all_prior_inds.extend(chunk_prior_inds) | |
if options.get("save_first_pass", True): | |
save_output( | |
all_samples, | |
save_path=os.path.join(save_path, "first-pass"), | |
video_save_fps=5, | |
) | |
video_path_0 = os.path.join(save_path, "first-pass", "samples-rgb.mp4") | |
yield video_path_0 | |
# ---------------------------------- second pass ---------------------------------- | |
prior_indices = image_cond["prior_indices"] | |
assert ( | |
prior_indices is not None | |
), "`prior_frame_indices` needs to be set if using 2-pass sampling." | |
prior_argsort = np.argsort(input_indices + prior_indices).tolist() | |
prior_indices = np.array(input_indices + prior_indices)[prior_argsort].tolist() | |
gt_input_inds = [prior_argsort.index(i) for i in range(input_c2ws.shape[0])] | |
traj_prior_imgs = torch.cat( | |
[input_imgs, get_k_from_dict(all_samples, "samples-rgb")], dim=0 | |
)[prior_argsort] | |
traj_prior_imgs_clip = torch.cat( | |
[ | |
input_imgs_clip, | |
get_k_from_dict(all_samples, "samples-rgb"), | |
], | |
dim=0, | |
)[prior_argsort] | |
traj_prior_c2ws = torch.cat([input_c2ws, traj_prior_c2ws], dim=0)[prior_argsort] | |
traj_prior_Ks = torch.cat([input_Ks, traj_prior_Ks], dim=0)[prior_argsort] | |
update_kv_for_dict(all_samples, "samples-rgb", traj_prior_imgs) | |
update_kv_for_dict(all_samples, "samples-c2ws", traj_prior_c2ws) | |
update_kv_for_dict(all_samples, "samples-intrinsics", traj_prior_Ks) | |
chunk_strategy = options.get("chunk_strategy", "nearest") | |
( | |
_, | |
prior_inds_per_chunk, | |
prior_sels_per_chunk, | |
test_inds_per_chunk, | |
test_sels_per_chunk, | |
) = chunk_input_and_test( | |
T_second_pass, | |
traj_prior_c2ws, | |
test_c2ws, | |
prior_indices, | |
test_indices, | |
options=options, | |
task=task, | |
chunk_strategy=chunk_strategy, | |
gt_input_inds=gt_input_inds, | |
) | |
print( | |
f"Two passes (second) - chunking with `{chunk_strategy}` strategy: total " | |
f"{len(prior_inds_per_chunk)} forward(s) ..." | |
) | |
all_samples = {} | |
all_test_inds = [] | |
for i, ( | |
chunk_prior_inds, | |
chunk_prior_sels, | |
chunk_test_inds, | |
chunk_test_sels, | |
) in tqdm( | |
enumerate( | |
zip( | |
prior_inds_per_chunk, | |
prior_sels_per_chunk, | |
test_inds_per_chunk, | |
test_sels_per_chunk, | |
) | |
), | |
total=len(prior_inds_per_chunk), | |
leave=False, | |
): | |
( | |
curr_prior_sels, | |
curr_test_sels, | |
curr_prior_maps, | |
curr_test_maps, | |
) = pad_indices( | |
chunk_prior_sels, | |
chunk_test_sels, | |
T=T_second_pass, | |
padding_mode="last", | |
) | |
curr_imgs, curr_imgs_clip, curr_c2ws, curr_Ks = [ | |
assemble( | |
input=x[chunk_prior_inds], | |
test=y[chunk_test_inds], | |
input_maps=curr_prior_maps, | |
test_maps=curr_test_maps, | |
) | |
for x, y in zip( | |
[ | |
traj_prior_imgs, | |
traj_prior_imgs_clip, | |
traj_prior_c2ws, | |
traj_prior_Ks, | |
], | |
[test_imgs, test_imgs_clip, test_c2ws, test_Ks], | |
) | |
] | |
value_dict = get_value_dict( | |
curr_imgs.to("cuda"), | |
curr_imgs_clip.to("cuda"), | |
curr_prior_sels, | |
curr_c2ws, | |
curr_Ks, | |
list(range(T_second_pass)), | |
all_c2ws=camera_cond["c2w"], # test_c2ws, | |
) | |
samples = do_sample( | |
model, | |
ae, | |
conditioner, | |
denoiser, | |
samplers[1] if len(samplers) > 1 else samplers[0], | |
value_dict, | |
H, | |
W, | |
C, | |
F, | |
T=T_second_pass, | |
cfg=( | |
options["cfg"][1] | |
if isinstance(options["cfg"], (list, tuple)) | |
and len(options["cfg"]) > 1 | |
else options["cfg"] | |
), | |
global_pbar=second_pass_pbar, | |
**{k: options[k] for k in options if k not in ["cfg", "T", "sampler"]}, | |
) | |
if samples is None: | |
return | |
samples = decode_output( | |
samples, T_second_pass, chunk_test_sels | |
) # decode into dict | |
if options.get("save_second_pass", False): | |
save_output( | |
replace_or_include_input_for_dict( | |
samples, | |
chunk_test_sels, | |
curr_imgs, | |
curr_c2ws, | |
curr_Ks, | |
), | |
save_path=os.path.join(save_path, "second-pass", f"forward_{i}"), | |
video_save_fps=2, | |
) | |
extend_dict(all_samples, samples) | |
all_test_inds.extend(chunk_test_inds) | |
all_samples = { | |
key: value[np.argsort(all_test_inds)] for key, value in all_samples.items() | |
} | |
save_output( | |
replace_or_include_input_for_dict( | |
all_samples, | |
test_indices, | |
imgs.clone(), | |
camera_cond["c2w"].clone(), | |
camera_cond["K"].clone(), | |
) | |
if options.get("replace_or_include_input", False) | |
else all_samples, | |
save_path=save_path, | |
video_save_fps=options.get("video_save_fps", 2), | |
) | |
video_path_1 = os.path.join(save_path, "samples-rgb.mp4") | |
yield video_path_1 | |