hangg-sai's picture
Initial commit
a342aa8
import json
import os
import os.path as osp
from glob import glob
from typing import Any, Dict, List, Optional, Tuple
import cv2
import imageio.v3 as iio
import numpy as np
import torch
from seva.geometry import (
align_principle_axes,
similarity_from_cameras,
transform_cameras,
transform_points,
)
def _get_rel_paths(path_dir: str) -> List[str]:
"""Recursively get relative paths of files in a directory."""
paths = []
for dp, _, fn in os.walk(path_dir):
for f in fn:
paths.append(os.path.relpath(os.path.join(dp, f), path_dir))
return paths
class BaseParser(object):
def __init__(
self,
data_dir: str,
factor: int = 1,
normalize: bool = False,
test_every: Optional[int] = 8,
):
self.data_dir = data_dir
self.factor = factor
self.normalize = normalize
self.test_every = test_every
self.image_names: List[str] = [] # (num_images,)
self.image_paths: List[str] = [] # (num_images,)
self.camtoworlds: np.ndarray = np.zeros((0, 4, 4)) # (num_images, 4, 4)
self.camera_ids: List[int] = [] # (num_images,)
self.Ks_dict: Dict[int, np.ndarray] = {} # Dict of camera_id -> K
self.params_dict: Dict[int, np.ndarray] = {} # Dict of camera_id -> params
self.imsize_dict: Dict[
int, Tuple[int, int]
] = {} # Dict of camera_id -> (width, height)
self.points: np.ndarray = np.zeros((0, 3)) # (num_points, 3)
self.points_err: np.ndarray = np.zeros((0,)) # (num_points,)
self.points_rgb: np.ndarray = np.zeros((0, 3)) # (num_points, 3)
self.point_indices: Dict[str, np.ndarray] = {} # Dict of image_name -> (M,)
self.transform: np.ndarray = np.zeros((4, 4)) # (4, 4)
self.mapx_dict: Dict[int, np.ndarray] = {} # Dict of camera_id -> (H, W)
self.mapy_dict: Dict[int, np.ndarray] = {} # Dict of camera_id -> (H, W)
self.roi_undist_dict: Dict[int, Tuple[int, int, int, int]] = (
dict()
) # Dict of camera_id -> (x, y, w, h)
self.scene_scale: float = 1.0
class DirectParser(BaseParser):
def __init__(
self,
imgs: List[np.ndarray],
c2ws: np.ndarray,
Ks: np.ndarray,
points: Optional[np.ndarray] = None,
points_rgb: Optional[np.ndarray] = None, # uint8
mono_disps: Optional[List[np.ndarray]] = None,
normalize: bool = False,
test_every: Optional[int] = None,
):
super().__init__("", 1, normalize, test_every)
self.image_names = [f"{i:06d}" for i in range(len(imgs))]
self.image_paths = ["null" for _ in range(len(imgs))]
self.camtoworlds = c2ws
self.camera_ids = [i for i in range(len(imgs))]
self.Ks_dict = {i: K for i, K in enumerate(Ks)}
self.imsize_dict = {
i: (img.shape[1], img.shape[0]) for i, img in enumerate(imgs)
}
if points is not None:
self.points = points
assert points_rgb is not None
self.points_rgb = points_rgb
self.points_err = np.zeros((len(points),))
self.imgs = imgs
self.mono_disps = mono_disps
# Normalize the world space.
if normalize:
T1 = similarity_from_cameras(self.camtoworlds)
self.camtoworlds = transform_cameras(T1, self.camtoworlds)
if points is not None:
self.points = transform_points(T1, self.points)
T2 = align_principle_axes(self.points)
self.camtoworlds = transform_cameras(T2, self.camtoworlds)
self.points = transform_points(T2, self.points)
else:
T2 = np.eye(4)
self.transform = T2 @ T1
else:
self.transform = np.eye(4)
# size of the scene measured by cameras
camera_locations = self.camtoworlds[:, :3, 3]
scene_center = np.mean(camera_locations, axis=0)
dists = np.linalg.norm(camera_locations - scene_center, axis=1)
self.scene_scale = np.max(dists)
class COLMAPParser(BaseParser):
"""COLMAP parser."""
def __init__(
self,
data_dir: str,
factor: int = 1,
normalize: bool = False,
test_every: Optional[int] = 8,
image_folder: str = "images",
colmap_folder: str = "sparse/0",
):
super().__init__(data_dir, factor, normalize, test_every)
colmap_dir = os.path.join(data_dir, colmap_folder)
assert os.path.exists(
colmap_dir
), f"COLMAP directory {colmap_dir} does not exist."
try:
from pycolmap import SceneManager
except ImportError:
raise ImportError(
"Please install pycolmap to use the data parsers: "
" `pip install git+https://github.com/jensenz-sai/pycolmap.git@543266bc316df2fe407b3a33d454b310b1641042`"
)
manager = SceneManager(colmap_dir)
manager.load_cameras()
manager.load_images()
manager.load_points3D()
# Extract extrinsic matrices in world-to-camera format.
imdata = manager.images
w2c_mats = []
camera_ids = []
Ks_dict = dict()
params_dict = dict()
imsize_dict = dict() # width, height
bottom = np.array([0, 0, 0, 1]).reshape(1, 4)
for k in imdata:
im = imdata[k]
rot = im.R()
trans = im.tvec.reshape(3, 1)
w2c = np.concatenate([np.concatenate([rot, trans], 1), bottom], axis=0)
w2c_mats.append(w2c)
# support different camera intrinsics
camera_id = im.camera_id
camera_ids.append(camera_id)
# camera intrinsics
cam = manager.cameras[camera_id]
fx, fy, cx, cy = cam.fx, cam.fy, cam.cx, cam.cy
K = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]])
K[:2, :] /= factor
Ks_dict[camera_id] = K
# Get distortion parameters.
type_ = cam.camera_type
if type_ == 0 or type_ == "SIMPLE_PINHOLE":
params = np.empty(0, dtype=np.float32)
camtype = "perspective"
elif type_ == 1 or type_ == "PINHOLE":
params = np.empty(0, dtype=np.float32)
camtype = "perspective"
if type_ == 2 or type_ == "SIMPLE_RADIAL":
params = np.array([cam.k1, 0.0, 0.0, 0.0], dtype=np.float32)
camtype = "perspective"
elif type_ == 3 or type_ == "RADIAL":
params = np.array([cam.k1, cam.k2, 0.0, 0.0], dtype=np.float32)
camtype = "perspective"
elif type_ == 4 or type_ == "OPENCV":
params = np.array([cam.k1, cam.k2, cam.p1, cam.p2], dtype=np.float32)
camtype = "perspective"
elif type_ == 5 or type_ == "OPENCV_FISHEYE":
params = np.array([cam.k1, cam.k2, cam.k3, cam.k4], dtype=np.float32)
camtype = "fisheye"
assert (
camtype == "perspective" # type: ignore
), f"Only support perspective camera model, got {type_}"
params_dict[camera_id] = params # type: ignore
# image size
imsize_dict[camera_id] = (cam.width // factor, cam.height // factor)
print(
f"[Parser] {len(imdata)} images, taken by {len(set(camera_ids))} cameras."
)
if len(imdata) == 0:
raise ValueError("No images found in COLMAP.")
if not (type_ == 0 or type_ == 1): # type: ignore
print("Warning: COLMAP Camera is not PINHOLE. Images have distortion.")
w2c_mats = np.stack(w2c_mats, axis=0)
# Convert extrinsics to camera-to-world.
camtoworlds = np.linalg.inv(w2c_mats)
# Image names from COLMAP. No need for permuting the poses according to
# image names anymore.
image_names = [imdata[k].name for k in imdata]
# Previous Nerf results were generated with images sorted by filename,
# ensure metrics are reported on the same test set.
inds = np.argsort(image_names)
image_names = [image_names[i] for i in inds]
camtoworlds = camtoworlds[inds]
camera_ids = [camera_ids[i] for i in inds]
# Load images.
if factor > 1:
image_dir_suffix = f"_{factor}"
else:
image_dir_suffix = ""
colmap_image_dir = os.path.join(data_dir, image_folder)
image_dir = os.path.join(data_dir, image_folder + image_dir_suffix)
for d in [image_dir, colmap_image_dir]:
if not os.path.exists(d):
raise ValueError(f"Image folder {d} does not exist.")
# Downsampled images may have different names vs images used for COLMAP,
# so we need to map between the two sorted lists of files.
colmap_files = sorted(_get_rel_paths(colmap_image_dir))
image_files = sorted(_get_rel_paths(image_dir))
colmap_to_image = dict(zip(colmap_files, image_files))
image_paths = [os.path.join(image_dir, colmap_to_image[f]) for f in image_names]
# 3D points and {image_name -> [point_idx]}
points = manager.points3D.astype(np.float32) # type: ignore
points_err = manager.point3D_errors.astype(np.float32) # type: ignore
points_rgb = manager.point3D_colors.astype(np.uint8) # type: ignore
point_indices = dict()
image_id_to_name = {v: k for k, v in manager.name_to_image_id.items()}
for point_id, data in manager.point3D_id_to_images.items():
for image_id, _ in data:
image_name = image_id_to_name[image_id]
point_idx = manager.point3D_id_to_point3D_idx[point_id]
point_indices.setdefault(image_name, []).append(point_idx)
point_indices = {
k: np.array(v).astype(np.int32) for k, v in point_indices.items()
}
# Normalize the world space.
if normalize:
T1 = similarity_from_cameras(camtoworlds)
camtoworlds = transform_cameras(T1, camtoworlds)
points = transform_points(T1, points)
T2 = align_principle_axes(points)
camtoworlds = transform_cameras(T2, camtoworlds)
points = transform_points(T2, points)
transform = T2 @ T1
else:
transform = np.eye(4)
self.image_names = image_names # List[str], (num_images,)
self.image_paths = image_paths # List[str], (num_images,)
self.camtoworlds = camtoworlds # np.ndarray, (num_images, 4, 4)
self.camera_ids = camera_ids # List[int], (num_images,)
self.Ks_dict = Ks_dict # Dict of camera_id -> K
self.params_dict = params_dict # Dict of camera_id -> params
self.imsize_dict = imsize_dict # Dict of camera_id -> (width, height)
self.points = points # np.ndarray, (num_points, 3)
self.points_err = points_err # np.ndarray, (num_points,)
self.points_rgb = points_rgb # np.ndarray, (num_points, 3)
self.point_indices = point_indices # Dict[str, np.ndarray], image_name -> [M,]
self.transform = transform # np.ndarray, (4, 4)
# undistortion
self.mapx_dict = dict()
self.mapy_dict = dict()
self.roi_undist_dict = dict()
for camera_id in self.params_dict.keys():
params = self.params_dict[camera_id]
if len(params) == 0:
continue # no distortion
assert camera_id in self.Ks_dict, f"Missing K for camera {camera_id}"
assert (
camera_id in self.params_dict
), f"Missing params for camera {camera_id}"
K = self.Ks_dict[camera_id]
width, height = self.imsize_dict[camera_id]
K_undist, roi_undist = cv2.getOptimalNewCameraMatrix(
K, params, (width, height), 0
)
mapx, mapy = cv2.initUndistortRectifyMap(
K,
params,
None,
K_undist,
(width, height),
cv2.CV_32FC1, # type: ignore
)
self.Ks_dict[camera_id] = K_undist
self.mapx_dict[camera_id] = mapx
self.mapy_dict[camera_id] = mapy
self.roi_undist_dict[camera_id] = roi_undist # type: ignore
# size of the scene measured by cameras
camera_locations = camtoworlds[:, :3, 3]
scene_center = np.mean(camera_locations, axis=0)
dists = np.linalg.norm(camera_locations - scene_center, axis=1)
self.scene_scale = np.max(dists)
class ReconfusionParser(BaseParser):
def __init__(self, data_dir: str, normalize: bool = False):
super().__init__(data_dir, 1, normalize, test_every=None)
def get_num(p):
return p.split("_")[-1].removesuffix(".json")
splits_per_num_input_frames = {}
num_input_frames = [
int(get_num(p)) if get_num(p).isdigit() else get_num(p)
for p in sorted(glob(osp.join(data_dir, "train_test_split_*.json")))
]
for num_input_frames in num_input_frames:
with open(
osp.join(
data_dir,
f"train_test_split_{num_input_frames}.json",
)
) as f:
splits_per_num_input_frames[num_input_frames] = json.load(f)
self.splits_per_num_input_frames = splits_per_num_input_frames
with open(osp.join(data_dir, "transforms.json")) as f:
metadata = json.load(f)
image_names, image_paths, camtoworlds = [], [], []
for frame in metadata["frames"]:
if frame["file_path"] is None:
image_path = image_name = None
else:
image_path = osp.join(data_dir, frame["file_path"])
image_name = osp.basename(image_path)
image_paths.append(image_path)
image_names.append(image_name)
camtoworld = np.array(frame["transform_matrix"])
if "applied_transform" in metadata:
applied_transform = np.concatenate(
[metadata["applied_transform"], [[0, 0, 0, 1]]], axis=0
)
camtoworld = applied_transform @ camtoworld
camtoworlds.append(camtoworld)
camtoworlds = np.array(camtoworlds)
camtoworlds[:, :, [1, 2]] *= -1
# Normalize the world space.
if normalize:
T1 = similarity_from_cameras(camtoworlds)
camtoworlds = transform_cameras(T1, camtoworlds)
self.transform = T1
else:
self.transform = np.eye(4)
self.image_names = image_names
self.image_paths = image_paths
self.camtoworlds = camtoworlds
self.camera_ids = list(range(len(image_paths)))
self.Ks_dict = {
i: np.array(
[
[
metadata.get("fl_x", frame.get("fl_x", None)),
0.0,
metadata.get("cx", frame.get("cx", None)),
],
[
0.0,
metadata.get("fl_y", frame.get("fl_y", None)),
metadata.get("cy", frame.get("cy", None)),
],
[0.0, 0.0, 1.0],
]
)
for i, frame in enumerate(metadata["frames"])
}
self.imsize_dict = {
i: (
metadata.get("w", frame.get("w", None)),
metadata.get("h", frame.get("h", None)),
)
for i, frame in enumerate(metadata["frames"])
}
# When num_input_frames is None, use all frames for both training and
# testing.
# self.splits_per_num_input_frames[None] = {
# "train_ids": list(range(len(image_paths))),
# "test_ids": list(range(len(image_paths))),
# }
# size of the scene measured by cameras
camera_locations = camtoworlds[:, :3, 3]
scene_center = np.mean(camera_locations, axis=0)
dists = np.linalg.norm(camera_locations - scene_center, axis=1)
self.scene_scale = np.max(dists)
self.bounds = None
if osp.exists(osp.join(data_dir, "bounds.npy")):
self.bounds = np.load(osp.join(data_dir, "bounds.npy"))
scaling = np.linalg.norm(self.transform[0, :3])
self.bounds = self.bounds / scaling
class Dataset(torch.utils.data.Dataset):
"""A simple dataset class."""
def __init__(
self,
parser: BaseParser,
split: str = "train",
num_input_frames: Optional[int] = None,
patch_size: Optional[int] = None,
load_depths: bool = False,
load_mono_disps: bool = False,
):
self.parser = parser
self.split = split
self.num_input_frames = num_input_frames
self.patch_size = patch_size
self.load_depths = load_depths
self.load_mono_disps = load_mono_disps
if load_mono_disps:
assert isinstance(parser, DirectParser)
assert parser.mono_disps is not None
if isinstance(parser, ReconfusionParser):
ids_per_split = parser.splits_per_num_input_frames[num_input_frames]
self.indices = ids_per_split[
"train_ids" if split == "train" else "test_ids"
]
else:
indices = np.arange(len(self.parser.image_names))
if split == "train":
self.indices = (
indices[indices % self.parser.test_every != 0]
if self.parser.test_every is not None
else indices
)
else:
self.indices = (
indices[indices % self.parser.test_every == 0]
if self.parser.test_every is not None
else indices
)
def __len__(self):
return len(self.indices)
def __getitem__(self, item: int) -> Dict[str, Any]:
index = self.indices[item]
if isinstance(self.parser, DirectParser):
image = self.parser.imgs[index]
else:
image = iio.imread(self.parser.image_paths[index])[..., :3]
camera_id = self.parser.camera_ids[index]
K = self.parser.Ks_dict[camera_id].copy() # undistorted K
params = self.parser.params_dict.get(camera_id, None)
camtoworlds = self.parser.camtoworlds[index]
x, y, w, h = 0, 0, image.shape[1], image.shape[0]
if params is not None and len(params) > 0:
# Images are distorted. Undistort them.
mapx, mapy = (
self.parser.mapx_dict[camera_id],
self.parser.mapy_dict[camera_id],
)
image = cv2.remap(image, mapx, mapy, cv2.INTER_LINEAR)
x, y, w, h = self.parser.roi_undist_dict[camera_id]
image = image[y : y + h, x : x + w]
if self.patch_size is not None:
# Random crop.
h, w = image.shape[:2]
x = np.random.randint(0, max(w - self.patch_size, 1))
y = np.random.randint(0, max(h - self.patch_size, 1))
image = image[y : y + self.patch_size, x : x + self.patch_size]
K[0, 2] -= x
K[1, 2] -= y
data = {
"K": torch.from_numpy(K).float(),
"camtoworld": torch.from_numpy(camtoworlds).float(),
"image": torch.from_numpy(image).float(),
"image_id": item, # the index of the image in the dataset
}
if self.load_depths:
# projected points to image plane to get depths
worldtocams = np.linalg.inv(camtoworlds)
image_name = self.parser.image_names[index]
point_indices = self.parser.point_indices[image_name]
points_world = self.parser.points[point_indices]
points_cam = (worldtocams[:3, :3] @ points_world.T + worldtocams[:3, 3:4]).T
points_proj = (K @ points_cam.T).T
points = points_proj[:, :2] / points_proj[:, 2:3] # (M, 2)
depths = points_cam[:, 2] # (M,)
if self.patch_size is not None:
points[:, 0] -= x
points[:, 1] -= y
# filter out points outside the image
selector = (
(points[:, 0] >= 0)
& (points[:, 0] < image.shape[1])
& (points[:, 1] >= 0)
& (points[:, 1] < image.shape[0])
& (depths > 0)
)
points = points[selector]
depths = depths[selector]
data["points"] = torch.from_numpy(points).float()
data["depths"] = torch.from_numpy(depths).float()
if self.load_mono_disps:
data["mono_disps"] = torch.from_numpy(self.parser.mono_disps[index]).float() # type: ignore
return data
def get_parser(parser_type: str, **kwargs) -> BaseParser:
if parser_type == "colmap":
parser = COLMAPParser(**kwargs)
elif parser_type == "direct":
parser = DirectParser(**kwargs)
elif parser_type == "reconfusion":
parser = ReconfusionParser(**kwargs)
else:
raise ValueError(f"Unknown parser type: {parser_type}")
return parser