Spaces:
Running
on
L40S
Running
on
L40S
import json | |
import os | |
import os.path as osp | |
from glob import glob | |
from typing import Any, Dict, List, Optional, Tuple | |
import cv2 | |
import imageio.v3 as iio | |
import numpy as np | |
import torch | |
from seva.geometry import ( | |
align_principle_axes, | |
similarity_from_cameras, | |
transform_cameras, | |
transform_points, | |
) | |
def _get_rel_paths(path_dir: str) -> List[str]: | |
"""Recursively get relative paths of files in a directory.""" | |
paths = [] | |
for dp, _, fn in os.walk(path_dir): | |
for f in fn: | |
paths.append(os.path.relpath(os.path.join(dp, f), path_dir)) | |
return paths | |
class BaseParser(object): | |
def __init__( | |
self, | |
data_dir: str, | |
factor: int = 1, | |
normalize: bool = False, | |
test_every: Optional[int] = 8, | |
): | |
self.data_dir = data_dir | |
self.factor = factor | |
self.normalize = normalize | |
self.test_every = test_every | |
self.image_names: List[str] = [] # (num_images,) | |
self.image_paths: List[str] = [] # (num_images,) | |
self.camtoworlds: np.ndarray = np.zeros((0, 4, 4)) # (num_images, 4, 4) | |
self.camera_ids: List[int] = [] # (num_images,) | |
self.Ks_dict: Dict[int, np.ndarray] = {} # Dict of camera_id -> K | |
self.params_dict: Dict[int, np.ndarray] = {} # Dict of camera_id -> params | |
self.imsize_dict: Dict[ | |
int, Tuple[int, int] | |
] = {} # Dict of camera_id -> (width, height) | |
self.points: np.ndarray = np.zeros((0, 3)) # (num_points, 3) | |
self.points_err: np.ndarray = np.zeros((0,)) # (num_points,) | |
self.points_rgb: np.ndarray = np.zeros((0, 3)) # (num_points, 3) | |
self.point_indices: Dict[str, np.ndarray] = {} # Dict of image_name -> (M,) | |
self.transform: np.ndarray = np.zeros((4, 4)) # (4, 4) | |
self.mapx_dict: Dict[int, np.ndarray] = {} # Dict of camera_id -> (H, W) | |
self.mapy_dict: Dict[int, np.ndarray] = {} # Dict of camera_id -> (H, W) | |
self.roi_undist_dict: Dict[int, Tuple[int, int, int, int]] = ( | |
dict() | |
) # Dict of camera_id -> (x, y, w, h) | |
self.scene_scale: float = 1.0 | |
class DirectParser(BaseParser): | |
def __init__( | |
self, | |
imgs: List[np.ndarray], | |
c2ws: np.ndarray, | |
Ks: np.ndarray, | |
points: Optional[np.ndarray] = None, | |
points_rgb: Optional[np.ndarray] = None, # uint8 | |
mono_disps: Optional[List[np.ndarray]] = None, | |
normalize: bool = False, | |
test_every: Optional[int] = None, | |
): | |
super().__init__("", 1, normalize, test_every) | |
self.image_names = [f"{i:06d}" for i in range(len(imgs))] | |
self.image_paths = ["null" for _ in range(len(imgs))] | |
self.camtoworlds = c2ws | |
self.camera_ids = [i for i in range(len(imgs))] | |
self.Ks_dict = {i: K for i, K in enumerate(Ks)} | |
self.imsize_dict = { | |
i: (img.shape[1], img.shape[0]) for i, img in enumerate(imgs) | |
} | |
if points is not None: | |
self.points = points | |
assert points_rgb is not None | |
self.points_rgb = points_rgb | |
self.points_err = np.zeros((len(points),)) | |
self.imgs = imgs | |
self.mono_disps = mono_disps | |
# Normalize the world space. | |
if normalize: | |
T1 = similarity_from_cameras(self.camtoworlds) | |
self.camtoworlds = transform_cameras(T1, self.camtoworlds) | |
if points is not None: | |
self.points = transform_points(T1, self.points) | |
T2 = align_principle_axes(self.points) | |
self.camtoworlds = transform_cameras(T2, self.camtoworlds) | |
self.points = transform_points(T2, self.points) | |
else: | |
T2 = np.eye(4) | |
self.transform = T2 @ T1 | |
else: | |
self.transform = np.eye(4) | |
# size of the scene measured by cameras | |
camera_locations = self.camtoworlds[:, :3, 3] | |
scene_center = np.mean(camera_locations, axis=0) | |
dists = np.linalg.norm(camera_locations - scene_center, axis=1) | |
self.scene_scale = np.max(dists) | |
class COLMAPParser(BaseParser): | |
"""COLMAP parser.""" | |
def __init__( | |
self, | |
data_dir: str, | |
factor: int = 1, | |
normalize: bool = False, | |
test_every: Optional[int] = 8, | |
image_folder: str = "images", | |
colmap_folder: str = "sparse/0", | |
): | |
super().__init__(data_dir, factor, normalize, test_every) | |
colmap_dir = os.path.join(data_dir, colmap_folder) | |
assert os.path.exists( | |
colmap_dir | |
), f"COLMAP directory {colmap_dir} does not exist." | |
try: | |
from pycolmap import SceneManager | |
except ImportError: | |
raise ImportError( | |
"Please install pycolmap to use the data parsers: " | |
" `pip install git+https://github.com/jensenz-sai/pycolmap.git@543266bc316df2fe407b3a33d454b310b1641042`" | |
) | |
manager = SceneManager(colmap_dir) | |
manager.load_cameras() | |
manager.load_images() | |
manager.load_points3D() | |
# Extract extrinsic matrices in world-to-camera format. | |
imdata = manager.images | |
w2c_mats = [] | |
camera_ids = [] | |
Ks_dict = dict() | |
params_dict = dict() | |
imsize_dict = dict() # width, height | |
bottom = np.array([0, 0, 0, 1]).reshape(1, 4) | |
for k in imdata: | |
im = imdata[k] | |
rot = im.R() | |
trans = im.tvec.reshape(3, 1) | |
w2c = np.concatenate([np.concatenate([rot, trans], 1), bottom], axis=0) | |
w2c_mats.append(w2c) | |
# support different camera intrinsics | |
camera_id = im.camera_id | |
camera_ids.append(camera_id) | |
# camera intrinsics | |
cam = manager.cameras[camera_id] | |
fx, fy, cx, cy = cam.fx, cam.fy, cam.cx, cam.cy | |
K = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]]) | |
K[:2, :] /= factor | |
Ks_dict[camera_id] = K | |
# Get distortion parameters. | |
type_ = cam.camera_type | |
if type_ == 0 or type_ == "SIMPLE_PINHOLE": | |
params = np.empty(0, dtype=np.float32) | |
camtype = "perspective" | |
elif type_ == 1 or type_ == "PINHOLE": | |
params = np.empty(0, dtype=np.float32) | |
camtype = "perspective" | |
if type_ == 2 or type_ == "SIMPLE_RADIAL": | |
params = np.array([cam.k1, 0.0, 0.0, 0.0], dtype=np.float32) | |
camtype = "perspective" | |
elif type_ == 3 or type_ == "RADIAL": | |
params = np.array([cam.k1, cam.k2, 0.0, 0.0], dtype=np.float32) | |
camtype = "perspective" | |
elif type_ == 4 or type_ == "OPENCV": | |
params = np.array([cam.k1, cam.k2, cam.p1, cam.p2], dtype=np.float32) | |
camtype = "perspective" | |
elif type_ == 5 or type_ == "OPENCV_FISHEYE": | |
params = np.array([cam.k1, cam.k2, cam.k3, cam.k4], dtype=np.float32) | |
camtype = "fisheye" | |
assert ( | |
camtype == "perspective" # type: ignore | |
), f"Only support perspective camera model, got {type_}" | |
params_dict[camera_id] = params # type: ignore | |
# image size | |
imsize_dict[camera_id] = (cam.width // factor, cam.height // factor) | |
print( | |
f"[Parser] {len(imdata)} images, taken by {len(set(camera_ids))} cameras." | |
) | |
if len(imdata) == 0: | |
raise ValueError("No images found in COLMAP.") | |
if not (type_ == 0 or type_ == 1): # type: ignore | |
print("Warning: COLMAP Camera is not PINHOLE. Images have distortion.") | |
w2c_mats = np.stack(w2c_mats, axis=0) | |
# Convert extrinsics to camera-to-world. | |
camtoworlds = np.linalg.inv(w2c_mats) | |
# Image names from COLMAP. No need for permuting the poses according to | |
# image names anymore. | |
image_names = [imdata[k].name for k in imdata] | |
# Previous Nerf results were generated with images sorted by filename, | |
# ensure metrics are reported on the same test set. | |
inds = np.argsort(image_names) | |
image_names = [image_names[i] for i in inds] | |
camtoworlds = camtoworlds[inds] | |
camera_ids = [camera_ids[i] for i in inds] | |
# Load images. | |
if factor > 1: | |
image_dir_suffix = f"_{factor}" | |
else: | |
image_dir_suffix = "" | |
colmap_image_dir = os.path.join(data_dir, image_folder) | |
image_dir = os.path.join(data_dir, image_folder + image_dir_suffix) | |
for d in [image_dir, colmap_image_dir]: | |
if not os.path.exists(d): | |
raise ValueError(f"Image folder {d} does not exist.") | |
# Downsampled images may have different names vs images used for COLMAP, | |
# so we need to map between the two sorted lists of files. | |
colmap_files = sorted(_get_rel_paths(colmap_image_dir)) | |
image_files = sorted(_get_rel_paths(image_dir)) | |
colmap_to_image = dict(zip(colmap_files, image_files)) | |
image_paths = [os.path.join(image_dir, colmap_to_image[f]) for f in image_names] | |
# 3D points and {image_name -> [point_idx]} | |
points = manager.points3D.astype(np.float32) # type: ignore | |
points_err = manager.point3D_errors.astype(np.float32) # type: ignore | |
points_rgb = manager.point3D_colors.astype(np.uint8) # type: ignore | |
point_indices = dict() | |
image_id_to_name = {v: k for k, v in manager.name_to_image_id.items()} | |
for point_id, data in manager.point3D_id_to_images.items(): | |
for image_id, _ in data: | |
image_name = image_id_to_name[image_id] | |
point_idx = manager.point3D_id_to_point3D_idx[point_id] | |
point_indices.setdefault(image_name, []).append(point_idx) | |
point_indices = { | |
k: np.array(v).astype(np.int32) for k, v in point_indices.items() | |
} | |
# Normalize the world space. | |
if normalize: | |
T1 = similarity_from_cameras(camtoworlds) | |
camtoworlds = transform_cameras(T1, camtoworlds) | |
points = transform_points(T1, points) | |
T2 = align_principle_axes(points) | |
camtoworlds = transform_cameras(T2, camtoworlds) | |
points = transform_points(T2, points) | |
transform = T2 @ T1 | |
else: | |
transform = np.eye(4) | |
self.image_names = image_names # List[str], (num_images,) | |
self.image_paths = image_paths # List[str], (num_images,) | |
self.camtoworlds = camtoworlds # np.ndarray, (num_images, 4, 4) | |
self.camera_ids = camera_ids # List[int], (num_images,) | |
self.Ks_dict = Ks_dict # Dict of camera_id -> K | |
self.params_dict = params_dict # Dict of camera_id -> params | |
self.imsize_dict = imsize_dict # Dict of camera_id -> (width, height) | |
self.points = points # np.ndarray, (num_points, 3) | |
self.points_err = points_err # np.ndarray, (num_points,) | |
self.points_rgb = points_rgb # np.ndarray, (num_points, 3) | |
self.point_indices = point_indices # Dict[str, np.ndarray], image_name -> [M,] | |
self.transform = transform # np.ndarray, (4, 4) | |
# undistortion | |
self.mapx_dict = dict() | |
self.mapy_dict = dict() | |
self.roi_undist_dict = dict() | |
for camera_id in self.params_dict.keys(): | |
params = self.params_dict[camera_id] | |
if len(params) == 0: | |
continue # no distortion | |
assert camera_id in self.Ks_dict, f"Missing K for camera {camera_id}" | |
assert ( | |
camera_id in self.params_dict | |
), f"Missing params for camera {camera_id}" | |
K = self.Ks_dict[camera_id] | |
width, height = self.imsize_dict[camera_id] | |
K_undist, roi_undist = cv2.getOptimalNewCameraMatrix( | |
K, params, (width, height), 0 | |
) | |
mapx, mapy = cv2.initUndistortRectifyMap( | |
K, | |
params, | |
None, | |
K_undist, | |
(width, height), | |
cv2.CV_32FC1, # type: ignore | |
) | |
self.Ks_dict[camera_id] = K_undist | |
self.mapx_dict[camera_id] = mapx | |
self.mapy_dict[camera_id] = mapy | |
self.roi_undist_dict[camera_id] = roi_undist # type: ignore | |
# size of the scene measured by cameras | |
camera_locations = camtoworlds[:, :3, 3] | |
scene_center = np.mean(camera_locations, axis=0) | |
dists = np.linalg.norm(camera_locations - scene_center, axis=1) | |
self.scene_scale = np.max(dists) | |
class ReconfusionParser(BaseParser): | |
def __init__(self, data_dir: str, normalize: bool = False): | |
super().__init__(data_dir, 1, normalize, test_every=None) | |
def get_num(p): | |
return p.split("_")[-1].removesuffix(".json") | |
splits_per_num_input_frames = {} | |
num_input_frames = [ | |
int(get_num(p)) if get_num(p).isdigit() else get_num(p) | |
for p in sorted(glob(osp.join(data_dir, "train_test_split_*.json"))) | |
] | |
for num_input_frames in num_input_frames: | |
with open( | |
osp.join( | |
data_dir, | |
f"train_test_split_{num_input_frames}.json", | |
) | |
) as f: | |
splits_per_num_input_frames[num_input_frames] = json.load(f) | |
self.splits_per_num_input_frames = splits_per_num_input_frames | |
with open(osp.join(data_dir, "transforms.json")) as f: | |
metadata = json.load(f) | |
image_names, image_paths, camtoworlds = [], [], [] | |
for frame in metadata["frames"]: | |
if frame["file_path"] is None: | |
image_path = image_name = None | |
else: | |
image_path = osp.join(data_dir, frame["file_path"]) | |
image_name = osp.basename(image_path) | |
image_paths.append(image_path) | |
image_names.append(image_name) | |
camtoworld = np.array(frame["transform_matrix"]) | |
if "applied_transform" in metadata: | |
applied_transform = np.concatenate( | |
[metadata["applied_transform"], [[0, 0, 0, 1]]], axis=0 | |
) | |
camtoworld = applied_transform @ camtoworld | |
camtoworlds.append(camtoworld) | |
camtoworlds = np.array(camtoworlds) | |
camtoworlds[:, :, [1, 2]] *= -1 | |
# Normalize the world space. | |
if normalize: | |
T1 = similarity_from_cameras(camtoworlds) | |
camtoworlds = transform_cameras(T1, camtoworlds) | |
self.transform = T1 | |
else: | |
self.transform = np.eye(4) | |
self.image_names = image_names | |
self.image_paths = image_paths | |
self.camtoworlds = camtoworlds | |
self.camera_ids = list(range(len(image_paths))) | |
self.Ks_dict = { | |
i: np.array( | |
[ | |
[ | |
metadata.get("fl_x", frame.get("fl_x", None)), | |
0.0, | |
metadata.get("cx", frame.get("cx", None)), | |
], | |
[ | |
0.0, | |
metadata.get("fl_y", frame.get("fl_y", None)), | |
metadata.get("cy", frame.get("cy", None)), | |
], | |
[0.0, 0.0, 1.0], | |
] | |
) | |
for i, frame in enumerate(metadata["frames"]) | |
} | |
self.imsize_dict = { | |
i: ( | |
metadata.get("w", frame.get("w", None)), | |
metadata.get("h", frame.get("h", None)), | |
) | |
for i, frame in enumerate(metadata["frames"]) | |
} | |
# When num_input_frames is None, use all frames for both training and | |
# testing. | |
# self.splits_per_num_input_frames[None] = { | |
# "train_ids": list(range(len(image_paths))), | |
# "test_ids": list(range(len(image_paths))), | |
# } | |
# size of the scene measured by cameras | |
camera_locations = camtoworlds[:, :3, 3] | |
scene_center = np.mean(camera_locations, axis=0) | |
dists = np.linalg.norm(camera_locations - scene_center, axis=1) | |
self.scene_scale = np.max(dists) | |
self.bounds = None | |
if osp.exists(osp.join(data_dir, "bounds.npy")): | |
self.bounds = np.load(osp.join(data_dir, "bounds.npy")) | |
scaling = np.linalg.norm(self.transform[0, :3]) | |
self.bounds = self.bounds / scaling | |
class Dataset(torch.utils.data.Dataset): | |
"""A simple dataset class.""" | |
def __init__( | |
self, | |
parser: BaseParser, | |
split: str = "train", | |
num_input_frames: Optional[int] = None, | |
patch_size: Optional[int] = None, | |
load_depths: bool = False, | |
load_mono_disps: bool = False, | |
): | |
self.parser = parser | |
self.split = split | |
self.num_input_frames = num_input_frames | |
self.patch_size = patch_size | |
self.load_depths = load_depths | |
self.load_mono_disps = load_mono_disps | |
if load_mono_disps: | |
assert isinstance(parser, DirectParser) | |
assert parser.mono_disps is not None | |
if isinstance(parser, ReconfusionParser): | |
ids_per_split = parser.splits_per_num_input_frames[num_input_frames] | |
self.indices = ids_per_split[ | |
"train_ids" if split == "train" else "test_ids" | |
] | |
else: | |
indices = np.arange(len(self.parser.image_names)) | |
if split == "train": | |
self.indices = ( | |
indices[indices % self.parser.test_every != 0] | |
if self.parser.test_every is not None | |
else indices | |
) | |
else: | |
self.indices = ( | |
indices[indices % self.parser.test_every == 0] | |
if self.parser.test_every is not None | |
else indices | |
) | |
def __len__(self): | |
return len(self.indices) | |
def __getitem__(self, item: int) -> Dict[str, Any]: | |
index = self.indices[item] | |
if isinstance(self.parser, DirectParser): | |
image = self.parser.imgs[index] | |
else: | |
image = iio.imread(self.parser.image_paths[index])[..., :3] | |
camera_id = self.parser.camera_ids[index] | |
K = self.parser.Ks_dict[camera_id].copy() # undistorted K | |
params = self.parser.params_dict.get(camera_id, None) | |
camtoworlds = self.parser.camtoworlds[index] | |
x, y, w, h = 0, 0, image.shape[1], image.shape[0] | |
if params is not None and len(params) > 0: | |
# Images are distorted. Undistort them. | |
mapx, mapy = ( | |
self.parser.mapx_dict[camera_id], | |
self.parser.mapy_dict[camera_id], | |
) | |
image = cv2.remap(image, mapx, mapy, cv2.INTER_LINEAR) | |
x, y, w, h = self.parser.roi_undist_dict[camera_id] | |
image = image[y : y + h, x : x + w] | |
if self.patch_size is not None: | |
# Random crop. | |
h, w = image.shape[:2] | |
x = np.random.randint(0, max(w - self.patch_size, 1)) | |
y = np.random.randint(0, max(h - self.patch_size, 1)) | |
image = image[y : y + self.patch_size, x : x + self.patch_size] | |
K[0, 2] -= x | |
K[1, 2] -= y | |
data = { | |
"K": torch.from_numpy(K).float(), | |
"camtoworld": torch.from_numpy(camtoworlds).float(), | |
"image": torch.from_numpy(image).float(), | |
"image_id": item, # the index of the image in the dataset | |
} | |
if self.load_depths: | |
# projected points to image plane to get depths | |
worldtocams = np.linalg.inv(camtoworlds) | |
image_name = self.parser.image_names[index] | |
point_indices = self.parser.point_indices[image_name] | |
points_world = self.parser.points[point_indices] | |
points_cam = (worldtocams[:3, :3] @ points_world.T + worldtocams[:3, 3:4]).T | |
points_proj = (K @ points_cam.T).T | |
points = points_proj[:, :2] / points_proj[:, 2:3] # (M, 2) | |
depths = points_cam[:, 2] # (M,) | |
if self.patch_size is not None: | |
points[:, 0] -= x | |
points[:, 1] -= y | |
# filter out points outside the image | |
selector = ( | |
(points[:, 0] >= 0) | |
& (points[:, 0] < image.shape[1]) | |
& (points[:, 1] >= 0) | |
& (points[:, 1] < image.shape[0]) | |
& (depths > 0) | |
) | |
points = points[selector] | |
depths = depths[selector] | |
data["points"] = torch.from_numpy(points).float() | |
data["depths"] = torch.from_numpy(depths).float() | |
if self.load_mono_disps: | |
data["mono_disps"] = torch.from_numpy(self.parser.mono_disps[index]).float() # type: ignore | |
return data | |
def get_parser(parser_type: str, **kwargs) -> BaseParser: | |
if parser_type == "colmap": | |
parser = COLMAPParser(**kwargs) | |
elif parser_type == "direct": | |
parser = DirectParser(**kwargs) | |
elif parser_type == "reconfusion": | |
parser = ReconfusionParser(**kwargs) | |
else: | |
raise ValueError(f"Unknown parser type: {parser_type}") | |
return parser | |