Spaces:
Running
on
L4
Running
on
L4
| import math | |
| from typing import Tuple | |
| import torch | |
| import torch.nn.functional as F | |
| from jaxtyping import Float, Integer | |
| from torch import Tensor | |
| from sf3d.models.utils import dot, triangle_intersection_2d | |
| def _box_assign_vertex_to_cube_face( | |
| vertex_positions: Float[Tensor, "Nv 3"], | |
| vertex_normals: Float[Tensor, "Nv 3"], | |
| triangle_idxs: Integer[Tensor, "Nf 3"], | |
| bbox: Float[Tensor, "2 3"], | |
| ) -> Tuple[Float[Tensor, "Nf 3 2"], Integer[Tensor, "Nf 3"]]: | |
| # Test to not have a scaled model to fit the space better | |
| # bbox_min = bbox[:1].mean(-1, keepdim=True) | |
| # bbox_max = bbox[1:].mean(-1, keepdim=True) | |
| # v_pos_normalized = (vertex_positions - bbox_min) / (bbox_max - bbox_min) | |
| # Create a [0, 1] normalized vertex position | |
| v_pos_normalized = (vertex_positions - bbox[:1]) / (bbox[1:] - bbox[:1]) | |
| # And to [-1, 1] | |
| v_pos_normalized = 2.0 * v_pos_normalized - 1.0 | |
| # Get all vertex positions for each triangle | |
| # Now how do we define to which face the triangle belongs? Mean face pos? Max vertex pos? | |
| v0 = v_pos_normalized[triangle_idxs[:, 0]] | |
| v1 = v_pos_normalized[triangle_idxs[:, 1]] | |
| v2 = v_pos_normalized[triangle_idxs[:, 2]] | |
| tri_stack = torch.stack([v0, v1, v2], dim=1) | |
| vn0 = vertex_normals[triangle_idxs[:, 0]] | |
| vn1 = vertex_normals[triangle_idxs[:, 1]] | |
| vn2 = vertex_normals[triangle_idxs[:, 2]] | |
| tri_stack_nrm = torch.stack([vn0, vn1, vn2], dim=1) | |
| # Just average the normals per face | |
| face_normal = F.normalize(torch.sum(tri_stack_nrm, 1), eps=1e-6, dim=-1) | |
| # Now decide based on the face normal in which box map we project | |
| # abs_x, abs_y, abs_z = tri_stack_nrm.abs().unbind(-1) | |
| abs_x, abs_y, abs_z = tri_stack.abs().unbind(-1) | |
| axis = torch.tensor( | |
| [ | |
| [1, 0, 0], # 0 | |
| [-1, 0, 0], # 1 | |
| [0, 1, 0], # 2 | |
| [0, -1, 0], # 3 | |
| [0, 0, 1], # 4 | |
| [0, 0, -1], # 5 | |
| ], | |
| device=face_normal.device, | |
| dtype=face_normal.dtype, | |
| ) | |
| face_normal_axis = (face_normal[:, None] * axis[None]).sum(-1) | |
| index = face_normal_axis.argmax(-1) | |
| max_axis, uc, vc = ( | |
| torch.ones_like(abs_x), | |
| torch.zeros_like(tri_stack[..., :1]), | |
| torch.zeros_like(tri_stack[..., :1]), | |
| ) | |
| mask_pos_x = index == 0 | |
| max_axis[mask_pos_x] = abs_x[mask_pos_x] | |
| uc[mask_pos_x] = tri_stack[mask_pos_x][..., 1:2] | |
| vc[mask_pos_x] = -tri_stack[mask_pos_x][..., -1:] | |
| mask_neg_x = index == 1 | |
| max_axis[mask_neg_x] = abs_x[mask_neg_x] | |
| uc[mask_neg_x] = tri_stack[mask_neg_x][..., 1:2] | |
| vc[mask_neg_x] = -tri_stack[mask_neg_x][..., -1:] | |
| mask_pos_y = index == 2 | |
| max_axis[mask_pos_y] = abs_y[mask_pos_y] | |
| uc[mask_pos_y] = tri_stack[mask_pos_y][..., 0:1] | |
| vc[mask_pos_y] = -tri_stack[mask_pos_y][..., -1:] | |
| mask_neg_y = index == 3 | |
| max_axis[mask_neg_y] = abs_y[mask_neg_y] | |
| uc[mask_neg_y] = tri_stack[mask_neg_y][..., 0:1] | |
| vc[mask_neg_y] = -tri_stack[mask_neg_y][..., -1:] | |
| mask_pos_z = index == 4 | |
| max_axis[mask_pos_z] = abs_z[mask_pos_z] | |
| uc[mask_pos_z] = tri_stack[mask_pos_z][..., 0:1] | |
| vc[mask_pos_z] = tri_stack[mask_pos_z][..., 1:2] | |
| mask_neg_z = index == 5 | |
| max_axis[mask_neg_z] = abs_z[mask_neg_z] | |
| uc[mask_neg_z] = tri_stack[mask_neg_z][..., 0:1] | |
| vc[mask_neg_z] = -tri_stack[mask_neg_z][..., 1:2] | |
| # UC from [-1, 1] to [0, 1] | |
| max_dim_div = max_axis.max(dim=0, keepdims=True).values | |
| uc = ((uc[..., 0] / max_dim_div + 1.0) * 0.5).clip(0, 1) | |
| vc = ((vc[..., 0] / max_dim_div + 1.0) * 0.5).clip(0, 1) | |
| uv = torch.stack([uc, vc], dim=-1) | |
| return uv, index | |
| def _assign_faces_uv_to_atlas_index( | |
| vertex_positions: Float[Tensor, "Nv 3"], | |
| triangle_idxs: Integer[Tensor, "Nf 3"], | |
| face_uv: Float[Tensor, "Nf 3 2"], | |
| face_index: Integer[Tensor, "Nf 3"], | |
| ) -> Integer[Tensor, "Nf"]: # noqa: F821 | |
| triangle_pos = vertex_positions[triangle_idxs] | |
| # We need to do perform 3 overlap checks. | |
| # The first set is placed in the upper two thirds of the UV atlas. | |
| # Conceptually, this is the direct visible surfaces from the each cube side | |
| # The second set is placed in the lower thirds and the left half of the UV atlas. | |
| # This is the first set of occluded surfaces. They will also be saved in the projected fashion | |
| # The third pass finds all non assigned faces. They will be placed in the bottom right half of | |
| # the UV atlas in scattered fashion. | |
| assign_idx = face_index.clone() | |
| for overlap_step in range(3): | |
| overlapping_indicator = torch.zeros_like(assign_idx, dtype=torch.bool) | |
| for i in range(overlap_step * 6, (overlap_step + 1) * 6): | |
| mask = assign_idx == i | |
| if not mask.any(): | |
| continue | |
| # Get all elements belonging to the projection face | |
| uv_triangle = face_uv[mask] | |
| cur_triangle_pos = triangle_pos[mask] | |
| # Find the center of the uv coordinates | |
| center_uv = uv_triangle.mean(dim=1, keepdim=True) | |
| # And also the radius of the triangle | |
| uv_triangle_radius = (uv_triangle - center_uv).norm(dim=-1).max(-1).values | |
| potentially_overlapping_mask = ( | |
| # Find all close triangles | |
| (center_uv[None, ...] - center_uv[:, None]).norm(dim=-1) | |
| # Do not select the same element by offseting with an large valued identity matrix | |
| + torch.eye( | |
| uv_triangle.shape[0], | |
| device=uv_triangle.device, | |
| dtype=uv_triangle.dtype, | |
| ).unsqueeze(-1) | |
| * 1000 | |
| ) | |
| # Mark all potentially overlapping triangles to reduce the number of triangle intersection tests | |
| potentially_overlapping_mask = ( | |
| potentially_overlapping_mask | |
| <= (uv_triangle_radius.view(-1, 1, 1) * 3.0) | |
| ).squeeze(-1) | |
| overlap_coords = torch.stack(torch.where(potentially_overlapping_mask), -1) | |
| # Only unique triangles (A|B and B|A should be the same) | |
| f = torch.min(overlap_coords, dim=-1).values | |
| s = torch.max(overlap_coords, dim=-1).values | |
| overlap_coords = torch.unique(torch.stack([f, s], dim=1), dim=0) | |
| first, second = overlap_coords.unbind(-1) | |
| # Get the triangles | |
| tri_1 = uv_triangle[first] | |
| tri_2 = uv_triangle[second] | |
| # Perform the actual set with the reduced number of potentially overlapping triangles | |
| its = triangle_intersection_2d(tri_1, tri_2, eps=1e-6) | |
| # So we now need to detect which triangles are the occluded ones. | |
| # We always assume the first to be the visible one (the others should move) | |
| # In the previous step we use a lexigraphical sort to get the unique pairs | |
| # In this we use a sort based on the orthographic projection | |
| ax = 0 if i < 2 else 1 if i < 4 else 2 | |
| use_max = i % 2 == 1 | |
| tri1_c = cur_triangle_pos[first].mean(dim=1) | |
| tri2_c = cur_triangle_pos[second].mean(dim=1) | |
| mark_first = ( | |
| (tri1_c[..., ax] > tri2_c[..., ax]) | |
| if use_max | |
| else (tri1_c[..., ax] < tri2_c[..., ax]) | |
| ) | |
| first[mark_first] = second[mark_first] | |
| # Lastly the same index can be tested multiple times. | |
| # If one marks it as overlapping we keep it marked as such. | |
| # We do this by testing if it has been marked at least once. | |
| unique_idx, rev_idx = torch.unique(first, return_inverse=True) | |
| add = torch.zeros_like(unique_idx, dtype=torch.float32) | |
| add.index_add_(0, rev_idx, its.float()) | |
| its_mask = add > 0 | |
| # And fill it in the overlapping indicator | |
| idx = torch.where(mask)[0][unique_idx] | |
| overlapping_indicator[idx] = its_mask | |
| # Move the index to the overlap regions (shift by 6) | |
| assign_idx[overlapping_indicator] += 6 | |
| # We do not care about the correct face placement after the first 2 slices | |
| max_idx = 6 * 2 | |
| return assign_idx.clamp(0, max_idx) | |
| def _find_slice_offset_and_scale( | |
| index: Integer[Tensor, "Nf"], # noqa: F821 | |
| ) -> Tuple[ | |
| Float[Tensor, "Nf"], Float[Tensor, "Nf"], Float[Tensor, "Nf"], Float[Tensor, "Nf"] # noqa: F821 | |
| ]: # noqa: F821 | |
| # 6 due to the 6 cube faces | |
| off = 1 / 3 | |
| dupl_off = 1 / 6 | |
| # Here, we need to decide how to pack the textures in the case of overlap | |
| def x_offset_calc(x, i): | |
| offset_calc = i // 6 | |
| # Initial coordinates - just 3x2 grid | |
| if offset_calc == 0: | |
| return off * x | |
| else: | |
| # Smaller 3x2 grid plus eventual shift to right for | |
| # second overlap | |
| return dupl_off * x + min(offset_calc - 1, 1) * 0.5 | |
| def y_offset_calc(x, i): | |
| offset_calc = i // 6 | |
| # Initial coordinates - just a 3x2 grid | |
| if offset_calc == 0: | |
| return off * x | |
| else: | |
| # Smaller coordinates in the lowest row | |
| return dupl_off * x + off * 2 | |
| offset_x = torch.zeros_like(index, dtype=torch.float32) | |
| offset_y = torch.zeros_like(index, dtype=torch.float32) | |
| offset_x_vals = [0, 1, 2, 0, 1, 2] | |
| offset_y_vals = [0, 0, 0, 1, 1, 1] | |
| for i in range(index.max().item() + 1): | |
| mask = index == i | |
| if not mask.any(): | |
| continue | |
| offset_x[mask] = x_offset_calc(offset_x_vals[i % 6], i) | |
| offset_y[mask] = y_offset_calc(offset_y_vals[i % 6], i) | |
| div_x = torch.full_like(index, 6 // 2, dtype=torch.float32) | |
| # All overlap elements are saved in half scale | |
| div_x[index >= 6] = 6 | |
| div_y = div_x.clone() # Same for y | |
| # Except for the random overlaps | |
| div_x[index >= 12] = 2 | |
| # But the random overlaps are saved in a large block in the lower thirds | |
| div_y[index >= 12] = 3 | |
| return offset_x, offset_y, div_x, div_y | |
| def rotation_flip_matrix_2d( | |
| rad: float, flip_x: bool = False, flip_y: bool = False | |
| ) -> Float[Tensor, "2 2"]: | |
| cos = math.cos(rad) | |
| sin = math.sin(rad) | |
| rot_mat = torch.tensor([[cos, -sin], [sin, cos]], dtype=torch.float32) | |
| flip_mat = torch.tensor( | |
| [ | |
| [-1 if flip_x else 1, 0], | |
| [0, -1 if flip_y else 1], | |
| ], | |
| dtype=torch.float32, | |
| ) | |
| return flip_mat @ rot_mat | |
| def calculate_tangents( | |
| vertex_positions: Float[Tensor, "Nv 3"], | |
| vertex_normals: Float[Tensor, "Nv 3"], | |
| triangle_idxs: Integer[Tensor, "Nf 3"], | |
| face_uv: Float[Tensor, "Nf 3 2"], | |
| ) -> Float[Tensor, "Nf 3 4"]: # noqa: F821 | |
| vn_idx = [None] * 3 | |
| pos = [None] * 3 | |
| tex = face_uv.unbind(1) | |
| for i in range(0, 3): | |
| pos[i] = vertex_positions[triangle_idxs[:, i]] | |
| # t_nrm_idx is always the same as t_pos_idx | |
| vn_idx[i] = triangle_idxs[:, i] | |
| tangents = torch.zeros_like(vertex_normals) | |
| tansum = torch.zeros_like(vertex_normals) | |
| # Compute tangent space for each triangle | |
| duv1 = tex[1] - tex[0] | |
| duv2 = tex[2] - tex[0] | |
| dpos1 = pos[1] - pos[0] | |
| dpos2 = pos[2] - pos[0] | |
| tng_nom = dpos1 * duv2[..., 1:2] - dpos2 * duv1[..., 1:2] | |
| denom = duv1[..., 0:1] * duv2[..., 1:2] - duv1[..., 1:2] * duv2[..., 0:1] | |
| # Avoid division by zero for degenerated texture coordinates | |
| denom_safe = denom.clip(1e-6) | |
| tang = tng_nom / denom_safe | |
| # Update all 3 vertices | |
| for i in range(0, 3): | |
| idx = vn_idx[i][:, None].repeat(1, 3) | |
| tangents.scatter_add_(0, idx, tang) # tangents[n_i] = tangents[n_i] + tang | |
| tansum.scatter_add_( | |
| 0, idx, torch.ones_like(tang) | |
| ) # tansum[n_i] = tansum[n_i] + 1 | |
| # Also normalize it. Here we do not normalize the individual triangles first so larger area | |
| # triangles influence the tangent space more | |
| tangents = tangents / tansum | |
| # Normalize and make sure tangent is perpendicular to normal | |
| tangents = F.normalize(tangents, dim=1) | |
| tangents = F.normalize(tangents - dot(tangents, vertex_normals) * vertex_normals) | |
| return tangents | |
| def _rotate_uv_slices_consistent_space( | |
| vertex_positions: Float[Tensor, "Nv 3"], | |
| vertex_normals: Float[Tensor, "Nv 3"], | |
| triangle_idxs: Integer[Tensor, "Nf 3"], | |
| uv: Float[Tensor, "Nf 3 2"], | |
| index: Integer[Tensor, "Nf"], # noqa: F821 | |
| ): | |
| tangents = calculate_tangents(vertex_positions, vertex_normals, triangle_idxs, uv) | |
| pos_stack = torch.stack( | |
| [ | |
| -vertex_positions[..., 1], | |
| vertex_positions[..., 0], | |
| torch.zeros_like(vertex_positions[..., 0]), | |
| ], | |
| dim=-1, | |
| ) | |
| expected_tangents = F.normalize( | |
| torch.linalg.cross( | |
| vertex_normals, torch.linalg.cross(pos_stack, vertex_normals) | |
| ), | |
| -1, | |
| ) | |
| actual_tangents = tangents[triangle_idxs] | |
| expected_tangents = expected_tangents[triangle_idxs] | |
| def rotation_matrix_2d(theta): | |
| c, s = torch.cos(theta), torch.sin(theta) | |
| return torch.tensor([[c, -s], [s, c]]) | |
| # Now find the rotation | |
| index_mod = index % 6 # Shouldn't happen. Just for safety | |
| for i in range(6): | |
| mask = index_mod == i | |
| if not mask.any(): | |
| continue | |
| actual_mean_tangent = actual_tangents[mask].mean(dim=(0, 1)) | |
| expected_mean_tangent = expected_tangents[mask].mean(dim=(0, 1)) | |
| dot_product = torch.dot(actual_mean_tangent, expected_mean_tangent) | |
| cross_product = ( | |
| actual_mean_tangent[0] * expected_mean_tangent[1] | |
| - actual_mean_tangent[1] * expected_mean_tangent[0] | |
| ) | |
| angle = torch.atan2(cross_product, dot_product) | |
| rot_matrix = rotation_matrix_2d(angle).to(mask.device) | |
| # Center the uv coordinate to be in the range of -1 to 1 and 0 centered | |
| uv_cur = uv[mask] * 2 - 1 # Center it first | |
| # Rotate it | |
| uv[mask] = torch.einsum("ij,nfj->nfi", rot_matrix, uv_cur) | |
| # Rescale uv[mask] to be within the 0-1 range | |
| uv[mask] = (uv[mask] - uv[mask].min()) / (uv[mask].max() - uv[mask].min()) | |
| return uv | |
| def _handle_slice_uvs( | |
| uv: Float[Tensor, "Nf 3 2"], | |
| index: Integer[Tensor, "Nf"], # noqa: F821 | |
| island_padding: float, | |
| max_index: int = 6 * 2, | |
| ) -> Float[Tensor, "Nf 3 2"]: # noqa: F821 | |
| uc, vc = uv.unbind(-1) | |
| # Get the second slice (The first overlap) | |
| index_filter = [index == i for i in range(6, max_index)] | |
| # Normalize them to always fully fill the atlas patch | |
| for i, fi in enumerate(index_filter): | |
| if fi.sum() > 0: | |
| # Scale the slice but only up to a factor of 2 | |
| # This keeps the texture resolution with the first slice in line (Half space in UV) | |
| uc[fi] = (uc[fi] - uc[fi].min()) / (uc[fi].max() - uc[fi].min()).clip(0.5) | |
| vc[fi] = (vc[fi] - vc[fi].min()) / (vc[fi].max() - vc[fi].min()).clip(0.5) | |
| uc_padded = (uc * (1 - 2 * island_padding) + island_padding).clip(0, 1) | |
| vc_padded = (vc * (1 - 2 * island_padding) + island_padding).clip(0, 1) | |
| return torch.stack([uc_padded, vc_padded], dim=-1) | |
| def _handle_remaining_uvs( | |
| uv: Float[Tensor, "Nf 3 2"], | |
| index: Integer[Tensor, "Nf"], # noqa: F821 | |
| island_padding: float, | |
| ) -> Float[Tensor, "Nf 3 2"]: | |
| uc, vc = uv.unbind(-1) | |
| # Get all remaining elements | |
| remaining_filter = index >= 6 * 2 | |
| squares_left = remaining_filter.sum() | |
| if squares_left == 0: | |
| return uv | |
| uc = uc[remaining_filter] | |
| vc = vc[remaining_filter] | |
| # Or remaining triangles are distributed in a rectangle | |
| # The rectangle takes 0.5 of the entire uv space in width and 1/3 in height | |
| ratio = 0.5 * (1 / 3) # 1.5 | |
| # sqrt(744/(0.5*(1/3))) | |
| mult = math.sqrt(squares_left / ratio) | |
| num_square_width = int(math.ceil(0.5 * mult)) | |
| num_square_height = int(math.ceil(squares_left / num_square_width)) | |
| width = 1 / num_square_width | |
| height = 1 / num_square_height | |
| # The idea is again to keep the texture resolution consistent with the first slice | |
| # This only occupys half the region in the texture chart but the scaling on the squares | |
| # assumes full coverage. | |
| clip_val = min(width, height) * 1.5 | |
| # Now normalize the UVs with taking into account the maximum scaling | |
| uc = (uc - uc.min(dim=1, keepdim=True).values) / ( | |
| uc.amax(dim=1, keepdim=True) - uc.amin(dim=1, keepdim=True) | |
| ).clip(clip_val) | |
| vc = (vc - vc.min(dim=1, keepdim=True).values) / ( | |
| vc.amax(dim=1, keepdim=True) - vc.amin(dim=1, keepdim=True) | |
| ).clip(clip_val) | |
| # Add a small padding | |
| uc = ( | |
| uc * (1 - island_padding * num_square_width * 0.5) | |
| + island_padding * num_square_width * 0.25 | |
| ).clip(0, 1) | |
| vc = ( | |
| vc * (1 - island_padding * num_square_height * 0.5) | |
| + island_padding * num_square_height * 0.25 | |
| ).clip(0, 1) | |
| uc = uc * width | |
| vc = vc * height | |
| # And calculate offsets for each element | |
| idx = torch.arange(uc.shape[0], device=uc.device, dtype=torch.int32) | |
| x_idx = idx % num_square_width | |
| y_idx = idx // num_square_width | |
| # And move each triangle to its own spot | |
| uc = uc + x_idx[:, None] * width | |
| vc = vc + y_idx[:, None] * height | |
| uc = (uc * (1 - 2 * island_padding * 0.5) + island_padding * 0.5).clip(0, 1) | |
| vc = (vc * (1 - 2 * island_padding * 0.5) + island_padding * 0.5).clip(0, 1) | |
| uv[remaining_filter] = torch.stack([uc, vc], dim=-1) | |
| return uv | |
| def _distribute_individual_uvs_in_atlas( | |
| face_uv: Float[Tensor, "Nf 3 2"], | |
| assigned_faces: Integer[Tensor, "Nf"], # noqa: F821 | |
| offset_x: Float[Tensor, "Nf"], # noqa: F821 | |
| offset_y: Float[Tensor, "Nf"], # noqa: F821 | |
| div_x: Float[Tensor, "Nf"], # noqa: F821 | |
| div_y: Float[Tensor, "Nf"], # noqa: F821 | |
| island_padding: float, | |
| ): | |
| # Place the slice first | |
| placed_uv = _handle_slice_uvs(face_uv, assigned_faces, island_padding) | |
| # Then handle the remaining overlap elements | |
| placed_uv = _handle_remaining_uvs(placed_uv, assigned_faces, island_padding) | |
| uc, vc = placed_uv.unbind(-1) | |
| uc = uc / div_x[:, None] + offset_x[:, None] | |
| vc = vc / div_y[:, None] + offset_y[:, None] | |
| uv = torch.stack([uc, vc], dim=-1).view(-1, 2) | |
| return uv | |
| def _get_unique_face_uv( | |
| uv: Float[Tensor, "Nf 3 2"], | |
| ) -> Tuple[Float[Tensor, "Utex 3"], Integer[Tensor, "Nf"]]: # noqa: F821 | |
| unique_uv, unique_idx = torch.unique(uv, return_inverse=True, dim=0) | |
| # And add the face to uv index mapping | |
| vtex_idx = unique_idx.view(-1, 3) | |
| return unique_uv, vtex_idx | |
| def _align_mesh_with_main_axis( | |
| vertex_positions: Float[Tensor, "Nv 3"], vertex_normals: Float[Tensor, "Nv 3"] | |
| ) -> Tuple[Float[Tensor, "Nv 3"], Float[Tensor, "Nv 3"]]: | |
| # Use pca to find the 2 main axis (third is derived by cross product) | |
| # Set the random seed so it's repeatable | |
| torch.manual_seed(0) | |
| _, _, v = torch.pca_lowrank(vertex_positions, q=2) | |
| main_axis, seconday_axis = v[:, 0], v[:, 1] | |
| main_axis: Float[Tensor, "3"] = F.normalize(main_axis, eps=1e-6, dim=-1) | |
| # Orthogonalize the second axis | |
| seconday_axis: Float[Tensor, "3"] = F.normalize( | |
| seconday_axis - dot(seconday_axis, main_axis) * main_axis, eps=1e-6, dim=-1 | |
| ) | |
| # Create perpendicular third axis | |
| third_axis: Float[Tensor, "3"] = F.normalize( | |
| torch.cross(main_axis, seconday_axis), dim=-1, eps=1e-6 | |
| ) | |
| # Check to which canonical axis each aligns | |
| main_axis_max_idx = main_axis.abs().argmax().item() | |
| seconday_axis_max_idx = seconday_axis.abs().argmax().item() | |
| third_axis_max_idx = third_axis.abs().argmax().item() | |
| # Now sort the axes based on the argmax so they align with thecanonoical axes | |
| # If two axes have the same argmax move one of them | |
| all_possible_axis = {0, 1, 2} | |
| cur_index = 1 | |
| while len(set([main_axis_max_idx, seconday_axis_max_idx, third_axis_max_idx])) != 3: | |
| # Find missing axis | |
| missing_axis = all_possible_axis - set( | |
| [main_axis_max_idx, seconday_axis_max_idx, third_axis_max_idx] | |
| ) | |
| missing_axis = missing_axis.pop() | |
| # Just assign it to third axis as it had the smallest contribution to the | |
| # overall shape | |
| if cur_index == 1: | |
| third_axis_max_idx = missing_axis | |
| elif cur_index == 2: | |
| seconday_axis_max_idx = missing_axis | |
| else: | |
| raise ValueError("Could not find 3 unique axis") | |
| cur_index += 1 | |
| if len({main_axis_max_idx, seconday_axis_max_idx, third_axis_max_idx}) != 3: | |
| raise ValueError("Could not find 3 unique axis") | |
| axes = [None] * 3 | |
| axes[main_axis_max_idx] = main_axis | |
| axes[seconday_axis_max_idx] = seconday_axis | |
| axes[third_axis_max_idx] = third_axis | |
| # Create rotation matrix from the individual axes | |
| rot_mat = torch.stack(axes, dim=1).T | |
| # Now rotate the vertex positions and vertex normals so the mesh aligns with the main axis | |
| vertex_positions = torch.einsum("ij,nj->ni", rot_mat, vertex_positions) | |
| vertex_normals = torch.einsum("ij,nj->ni", rot_mat, vertex_normals) | |
| return vertex_positions, vertex_normals | |
| def box_projection_uv_unwrap( | |
| vertex_positions: Float[Tensor, "Nv 3"], | |
| vertex_normals: Float[Tensor, "Nv 3"], | |
| triangle_idxs: Integer[Tensor, "Nf 3"], | |
| island_padding: float, | |
| ) -> Tuple[Float[Tensor, "Utex 3"], Integer[Tensor, "Nf"]]: # noqa: F821 | |
| # Align the mesh with main axis directions first | |
| vertex_positions, vertex_normals = _align_mesh_with_main_axis( | |
| vertex_positions, vertex_normals | |
| ) | |
| bbox: Float[Tensor, "2 3"] = torch.stack( | |
| [vertex_positions.min(dim=0).values, vertex_positions.max(dim=0).values], dim=0 | |
| ) | |
| # First decide in which cube face the triangle is placed | |
| face_uv, face_index = _box_assign_vertex_to_cube_face( | |
| vertex_positions, vertex_normals, triangle_idxs, bbox | |
| ) | |
| # Rotate the UV islands in a way that they align with the radial z tangent space | |
| face_uv = _rotate_uv_slices_consistent_space( | |
| vertex_positions, vertex_normals, triangle_idxs, face_uv, face_index | |
| ) | |
| # Then find where where the face is placed in the atlas. | |
| # This has to detect potential overlaps | |
| assigned_atlas_index = _assign_faces_uv_to_atlas_index( | |
| vertex_positions, triangle_idxs, face_uv, face_index | |
| ) | |
| # Then figure out the final place in the atlas based on the assignment | |
| offset_x, offset_y, div_x, div_y = _find_slice_offset_and_scale( | |
| assigned_atlas_index | |
| ) | |
| # Next distribute the faces in the uv atlas | |
| placed_uv = _distribute_individual_uvs_in_atlas( | |
| face_uv, assigned_atlas_index, offset_x, offset_y, div_x, div_y, island_padding | |
| ) | |
| # And get the unique per-triangle UV coordinates | |
| return _get_unique_face_uv(placed_uv) | |