import glob
import os
import random

import cv2
import numpy as np
import torch
import torch.nn.functional as F
from pycocotools import mask

from model.segment_anything.utils.transforms import ResizeLongestSide

from .data_processing import get_mask_from_json
from .refer import REFER
from .refer_seg_dataset import ReferSegDataset
from .sem_seg_dataset import SemSegDataset
from torchvision import transforms
import json
from PIL import Image

def collate_fn(
    batch, tokenizer=None, local_rank=-1
):
    image_path_list = []
    images_list = []
    images_evf_list = []
    masks_list = []
    label_list = []
    resize_list = []
    sampled_classes_list = []
    offset_list = [0]
    cnt = 0
    inferences = []
    for (
        image_path,
        images,
        images_evf,
        masks,
        label,
        resize,
        sampled_classes,
        inference,
    ) in batch:
        image_path_list.append(image_path)
        images_list.append(images)
        images_evf_list.append(images_evf)
        label_list.append(label)
        masks_list.append(masks.float())
        resize_list.append(resize)
        sampled_classes_list.extend(sampled_classes)
        cnt += len(sampled_classes)
        offset_list.append(cnt)
        inferences.append(inference)

    input_ids = [
        tokenizer(prompt, return_tensors="pt").input_ids[0]
        for prompt in sampled_classes_list
    ]

    input_ids = torch.nn.utils.rnn.pad_sequence(
        input_ids, batch_first=True, padding_value=tokenizer.pad_token_id
    )
    attention_masks = input_ids.ne(tokenizer.pad_token_id)

    if inferences[0] == False:
        truncate_len = tokenizer.model_max_length

        if input_ids.shape[1] > truncate_len:
            input_ids = input_ids[:, :truncate_len]
            targets = targets[:, :truncate_len]
            attention_masks = attention_masks[:, :truncate_len]

    return {
        "image_paths": image_path_list,
        "images": torch.stack(images_list, dim=0),
        "images_evf": torch.stack(images_evf_list, dim=0),
        "input_ids": input_ids,
        "attention_masks": attention_masks,
        "masks_list": masks_list,
        "label_list": label_list,
        "resize_list": resize_list,
        "offset": torch.LongTensor(offset_list),
        "sampled_classes_list": sampled_classes_list,
        "inference": inferences[0],
    }


class HybridDataset(torch.utils.data.Dataset):
    pixel_mean = torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1)
    pixel_std = torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1)
    img_size = 1024
    ignore_label = 255

    def __init__(
        self,
        base_image_dir,
        tokenizer,
        samples_per_epoch=500 * 8 * 2 * 10,
        precision: str = "fp32",
        image_size: int = 224,
        num_classes_per_sample: int = 3,
        exclude_val=False,
        dataset="sem_seg||refer_seg",
        sample_rate=[9, 3, 3, 1],
        sem_seg_data="ade20k||cocostuff||pascal_part||mapillary",
        refer_seg_data="refclef||refcoco||refcoco+||refcocog",
        explanatory=-1,
        model_type="ori",
        transform=ResizeLongestSide(1024),
    ):
        self.transform=transform
        self.model_type = model_type
        self.exclude_val = exclude_val
        self.dataset = dataset
        self.samples_per_epoch = samples_per_epoch
        self.explanatory = explanatory
        self.num_classes_per_sample = num_classes_per_sample
        sample_rate = np.array(sample_rate)
        self.sample_rate = sample_rate / sample_rate.sum()

        self.base_image_dir = base_image_dir
        self.image_size = image_size
        self.tokenizer = tokenizer
        self.precision = precision

        self.datasets = dataset.split("||")

        self.all_datasets = []
        for dataset in self.datasets:
            if dataset == "sem_seg":
                self.all_datasets.append(
                    SemSegDataset(
                        base_image_dir,
                        tokenizer,
                        samples_per_epoch,
                        precision,
                        image_size,
                        num_classes_per_sample,
                        exclude_val,
                        sem_seg_data,
                        self.model_type,
                        self.transform
                    )
                )
            elif dataset == "refer_seg":
                self.all_datasets.append(
                    ReferSegDataset(
                        base_image_dir,
                        tokenizer,
                        samples_per_epoch,
                        precision,
                        image_size,
                        num_classes_per_sample,
                        exclude_val,
                        refer_seg_data,
                        self.model_type,
                        self.transform
                    )
                )

    def __len__(self):
        return self.samples_per_epoch

    def __getitem__(self, idx):
        ind = np.random.choice(list(range(len(self.datasets))), p=self.sample_rate)
        data = self.all_datasets[ind]
        inference = False
        return *data[0], inference


def init_ade20k(base_image_dir):
    with open("utils/ade20k_classes.json", "r") as f:
        ade20k_classes = json.load(f)
    ade20k_classes = np.array(ade20k_classes)
    image_ids = sorted(
        os.listdir(os.path.join(base_image_dir, "ade20k/images", "validation"))
    )
    ade20k_image_ids = []
    for x in image_ids:
        if x.endswith(".jpg"):
            ade20k_image_ids.append(x[:-4])
    ade20k_images = []
    for image_id in ade20k_image_ids:  # self.descriptions:
        ade20k_images.append(
            os.path.join(
                base_image_dir,
                "ade20k",
                "images",
                "validation",
                "{}.jpg".format(image_id),
            )
        )
    ade20k_labels = [
        x.replace(".jpg", ".png").replace("images", "annotations")
        for x in ade20k_images
    ]
    print("ade20k: ", len(ade20k_images))
    return ade20k_classes, ade20k_images, ade20k_labels


class ValDataset(torch.utils.data.Dataset):
    pixel_mean = torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1)
    pixel_std = torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1)
    img_size = 1024
    ignore_label = 255

    def __init__(
        self,
        base_image_dir,
        tokenizer,
        val_dataset,
        image_size=224,
        model_type="ori"
    ):
        self.model_type = model_type
        self.base_image_dir = base_image_dir
        splits = val_dataset.split("|")
        if len(splits) == 3:
            ds, splitBy, split = splits
            base_image_dir = os.path.join(base_image_dir, "refer_seg")
            refer_api = REFER(base_image_dir, ds, splitBy)
            ref_ids_val = refer_api.getRefIds(split=split)
            images_ids_val = refer_api.getImgIds(ref_ids=ref_ids_val)
            refs_val = refer_api.loadRefs(ref_ids=ref_ids_val)
            refer_seg_ds = {}
            refer_seg_ds["images"] = []
            loaded_images = refer_api.loadImgs(image_ids=images_ids_val)
            for item in loaded_images:
                item = item.copy()
                if ds == "refclef":
                    item["file_name"] = os.path.join(
                        base_image_dir, "images/saiapr_tc-12", item["file_name"]
                    )
                elif ds in ["refcoco", "refcoco+", "refcocog", "grefcoco"]:
                    item["file_name"] = os.path.join(
                        base_image_dir,
                        "images/mscoco/images/train2014",
                        item["file_name"],
                    )
                refer_seg_ds["images"].append(item)
            refer_seg_ds["annotations"] = refer_api.Anns  # anns_val

            img2refs = {}
            for ref in refs_val:
                image_id = ref["image_id"]
                img2refs[image_id] = img2refs.get(image_id, []) + [
                    ref,
                ]
            refer_seg_ds["img2refs"] = img2refs
            self.refer_seg_ds = refer_seg_ds
            self.data_type = "refer_seg"
        elif val_dataset=="ade":
            ds = "ade"
            self.classes, self.images, self.labels = init_ade20k(base_image_dir)
            self.data_type = "sem_seg"
            

        self.ds = ds
        self.tokenizer = tokenizer
        self.transform = ResizeLongestSide(1024)
        self.image_preprocessor = transforms.Compose([
            transforms.ToTensor(),
            transforms.Resize((image_size, image_size), interpolation=3), 
            transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
        ])
    def __len__(self):
        if self.data_type == "refer_seg":
            return len(self.refer_seg_ds["images"])
        else:
            return len(self.images)

    def preprocess(self, x: torch.Tensor) -> torch.Tensor:
        """Normalize pixel values and pad to a square input."""          
        # Normalize colors
        x = (x - self.pixel_mean) / self.pixel_std

        if self.model_type=="effi":
            x = F.interpolate(x.unsqueeze(0), (self.img_size, self.img_size), mode="bilinear").squeeze(0)
        else:
            # Pad
            h, w = x.shape[-2:]
            padh = self.img_size - h
            padw = self.img_size - w
            x = F.pad(x, (0, padw, 0, padh))
        return x

    def __getitem__(self, idx):
        if self.data_type == "refer_seg":
            refer_seg_ds = self.refer_seg_ds
            images = refer_seg_ds["images"]
            annotations = refer_seg_ds["annotations"]
            img2refs = refer_seg_ds["img2refs"]

            image_info = images[idx]
            image_path = image_info["file_name"]
            image_id = image_info["id"]

            refs = img2refs[image_id]
            if len(refs) == 0:
                raise ValueError("image {} has no refs".format(image_id))

            sents = []
            ann_ids = []
            for ref in refs:
                for sent in ref["sentences"]:
                    sents.append(sent["sent"].strip().lower())
                    ann_ids.append(ref["ann_id"])

            sampled_sents = sents
            sampled_ann_ids = ann_ids
            image = cv2.imread(image_path)
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            is_sentence = False

        elif self.data_type == "sem_seg":
            image_path = self.images[idx]
            label_path = self.labels[idx]
            label = Image.open(label_path)
            label = np.array(label)
            label[label == 0] = 255
            label -= 1
            label[label == 254] = 255
            unique_label = np.unique(label).tolist()
            if 255 in unique_label:
                unique_label.remove(255)

            sampled_sents = [self.classes[class_id] for class_id in unique_label]
            
            img = cv2.imread(image_path)
            image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
            class_ids = unique_label
            label = torch.from_numpy(label).long()
            masks = []
            for class_id in class_ids:
                masks.append(label == class_id)
            masks = torch.stack(masks, dim=0)

        # preprocess image for evf
        image_evf = self.image_preprocessor(image)

        # preprocess image for sam
        image = self.transform.apply_image(image)
        resize = image.shape[:2]
        image = self.preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous())

        if self.data_type == "refer_seg":
            masks = []
            for i, ann_id in enumerate(sampled_ann_ids):
                ann = annotations[ann_id]
                if len(ann["segmentation"]) == 0 and sampled_sents[i] != "":
                    m = np.zeros((image_info["height"], image_info["width"], 1))
                else:
                    if type(ann["segmentation"][0]) == list:  # polygon
                        rle = mask.frPyObjects(
                            ann["segmentation"],
                            image_info["height"],
                            image_info["width"],
                        )
                    else:
                        rle = ann["segmentation"]
                        for i in range(len(rle)):
                            if not isinstance(rle[i]["counts"], bytes):
                                rle[i]["counts"] = rle[i]["counts"].encode()
                    m = mask.decode(rle)
                m = np.sum(
                    m, axis=2
                )  # sometimes there are multiple binary map (corresponding to multiple segs)
                m = m.astype(np.uint8)  # convert to np.uint8
                masks.append(m)
            
        if not isinstance(masks, torch.Tensor):
            masks = np.stack(masks, axis=0)
            masks = torch.from_numpy(masks)
        labels = torch.ones(masks.shape[1], masks.shape[2]) * self.ignore_label
        inference = True

        return (
            image_path,
            image,
            image_evf,
            masks,
            labels,
            resize,
            sampled_sents,
            inference,
        )