Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,8 @@ from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
4 |
import torch.nn.functional as F
|
5 |
|
6 |
model_path = "ssocean/NAIP" # 更换为你的模型路径
|
7 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_path, num_labels=1,
|
|
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
9 |
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -22,15 +23,37 @@ def predict(title, abstract):
|
|
22 |
return {"Predicted Impact": round(probability, 4)}
|
23 |
|
24 |
# 创建 Gradio 界面
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
iface.launch()
|
|
|
|
|
|
4 |
import torch.nn.functional as F
|
5 |
|
6 |
model_path = "ssocean/NAIP" # 更换为你的模型路径
|
7 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path, num_labels=1, load_in_8bit=True)
|
8 |
+
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
10 |
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
23 |
return {"Predicted Impact": round(probability, 4)}
|
24 |
|
25 |
# 创建 Gradio 界面
|
26 |
+
with gr.Blocks() as iface:
|
27 |
+
gr.Markdown("""
|
28 |
+
# 🧠 Predict Academic Impact
|
29 |
+
### Use AI to estimate the future academic impact of a paper
|
30 |
+
""")
|
31 |
+
with gr.Row():
|
32 |
+
with gr.Column():
|
33 |
+
title_input = gr.Textbox(
|
34 |
+
lines=2,
|
35 |
+
placeholder="Enter Paper Title Here...",
|
36 |
+
label="Paper Title"
|
37 |
+
)
|
38 |
+
abstract_input = gr.Textbox(
|
39 |
+
lines=5,
|
40 |
+
placeholder="Enter Paper Abstract Here... (Do not input line breaks. No more than 1024 tokens.)",
|
41 |
+
label="Paper Abstract"
|
42 |
+
)
|
43 |
+
submit_button = gr.Button("Predict Impact")
|
44 |
+
with gr.Column():
|
45 |
+
output = gr.Label(label="Predicted Impact")
|
46 |
+
|
47 |
+
gr.Markdown("""
|
48 |
+
**Important Notes**
|
49 |
+
- Predicted impact is a probabilistic value and not an accurate measure of actual future citations.
|
50 |
+
- It is intended as a tool for research and educational purposes only.
|
51 |
+
- The author takes no responsibility for the prediction results.
|
52 |
+
- Since the goal of this paper is to identify potentially more impactful papers, the sigmoid+MSE approach was adopted to achieve higher NDCG values (rather than sigmoid+BCE).
|
53 |
+
- As a result of the sigmoid gradient effect, the predicted values are concentrated between 0.1 and 0.9. Generally, we consider a predicted influence score greater than 0.65 to indicate an exceptionally impactful paper.
|
54 |
+
""")
|
55 |
+
submit_button.click(predict, inputs=[title_input, abstract_input], outputs=output)
|
56 |
|
57 |
iface.launch()
|
58 |
+
|
59 |
+
|