ssocean commited on
Commit
d5c51ec
·
verified ·
1 Parent(s): 1bff2f0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -7
app.py CHANGED
@@ -10,19 +10,15 @@ model = AutoModelForSequenceClassification.from_pretrained(model_path, num_label
10
 
11
  tokenizer = AutoTokenizer.from_pretrained(model_path)
12
 
13
- device = "cuda"
14
-
15
- model.eval()
16
 
17
  @spaces.GPU
18
  def predict(title, abstract):
19
- model.to(device)
20
  text = f'''Given a certain paper, Title: {title}\n Abstract: {abstract}. \n Predict its normalized academic impact (between 0 and 1):'''
21
  inputs = tokenizer(text, return_tensors="pt")
 
22
  with torch.no_grad():
23
- outputs = model(**inputs.to(device))
24
- print("Model device:", next(model.parameters()).device)
25
- print("Inputs device:", inputs.device)
26
  probability = torch.sigmoid(outputs.logits).item()
27
  # reason for +0.05: We observed that the predicted values in the web demo are generally around 0.05 lower than those in the local deployment (due to differences in software/hardware environments). Therefore, we applied the following compensation in the web demo. Please do not use this in the local deployment.
28
  if probability + 0.05 >=1.0:
 
10
 
11
  tokenizer = AutoTokenizer.from_pretrained(model_path)
12
 
 
 
 
13
 
14
  @spaces.GPU
15
  def predict(title, abstract):
16
+ model.eval()
17
  text = f'''Given a certain paper, Title: {title}\n Abstract: {abstract}. \n Predict its normalized academic impact (between 0 and 1):'''
18
  inputs = tokenizer(text, return_tensors="pt")
19
+ inputs = inputs.to("cuda")
20
  with torch.no_grad():
21
+ outputs = model(**inputs)
 
 
22
  probability = torch.sigmoid(outputs.logits).item()
23
  # reason for +0.05: We observed that the predicted values in the web demo are generally around 0.05 lower than those in the local deployment (due to differences in software/hardware environments). Therefore, we applied the following compensation in the web demo. Please do not use this in the local deployment.
24
  if probability + 0.05 >=1.0: