ssocean commited on
Commit
cd5bd02
·
verified ·
1 Parent(s): e751097
Files changed (1) hide show
  1. app.py +34 -0
app.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
4
+ import torch.nn.functional as F
5
+
6
+ model_path = "ssocean/NAIP" # 更换为你的模型路径
7
+ model = AutoModelForSequenceClassification.from_pretrained(model_path, num_labels=1, load_in_8bit=True)
8
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
9
+
10
+ device = "cuda" if torch.cuda.is_available() else "cpu"
11
+ model = model.to(device)
12
+ model.eval()
13
+
14
+ def predict(title, abstract):
15
+ # 将标题和摘要处理为一个单一的字符串
16
+ text = f"Given a certain paper, Title: {title}\nAbstract: {abstract}.\nPredict its normalized academic impact (between 0 and 1):"
17
+ inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
18
+ with torch.no_grad():
19
+ outputs = model(**inputs.to(device))
20
+ # 应用 Sigmoid 函数来获取概率输出
21
+ probability = torch.sigmoid(outputs.logits).item()
22
+ return {"Impact Probability": probability}
23
+
24
+ # 创建 Gradio 界面
25
+ iface = gr.Interface(
26
+ fn=predict,
27
+ inputs=[gr.inputs.Textbox(lines=2, placeholder="Enter Paper Title Here..."),
28
+ gr.inputs.Textbox(lines=5, placeholder="Enter Paper Abstract Here...")],
29
+ outputs=[gr.outputs.Label(num_top_classes=1)],
30
+ title="Newborn Article Impact Prediction based on LLM",
31
+ description="Predict the normalized academic impact of a paper based on its title and abstract."
32
+ )
33
+
34
+ iface.launch()