ssocean commited on
Commit
a749c57
·
verified ·
1 Parent(s): b5e7e03

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -6,13 +6,14 @@ import torch.nn.functional as F
6
  import torch.nn as nn
7
  import re
8
  model_path = r'ssocean/NAIP'
9
-
10
 
11
  global model, tokenizer
12
  model = AutoModelForSequenceClassification.from_pretrained(
13
  model_path,
14
  num_labels=1,
15
  load_in_8bit=True,
 
16
  )
17
  tokenizer = AutoTokenizer.from_pretrained(model_path)
18
  model.eval()
@@ -21,9 +22,8 @@ model.eval()
21
 
22
  @spaces.GPU(duration=60, enable_queue=True)
23
  def predict(title, abstract):
24
- model_device = next(model.parameters()).device
25
  text = f'''Given a certain paper, Title: {title}\n Abstract: {abstract}. \n Predict its normalized academic impact (between 0 and 1):'''
26
- inputs = tokenizer(text, return_tensors="pt")
27
  with torch.no_grad():
28
  outputs = model(**inputs)
29
  probability = torch.sigmoid(outputs.logits).item()
 
6
  import torch.nn as nn
7
  import re
8
  model_path = r'ssocean/NAIP'
9
+ device = 'cuda:0'
10
 
11
  global model, tokenizer
12
  model = AutoModelForSequenceClassification.from_pretrained(
13
  model_path,
14
  num_labels=1,
15
  load_in_8bit=True,
16
+ device_map={"": torch.device(device)}
17
  )
18
  tokenizer = AutoTokenizer.from_pretrained(model_path)
19
  model.eval()
 
22
 
23
  @spaces.GPU(duration=60, enable_queue=True)
24
  def predict(title, abstract):
 
25
  text = f'''Given a certain paper, Title: {title}\n Abstract: {abstract}. \n Predict its normalized academic impact (between 0 and 1):'''
26
+ inputs = tokenizer(text, return_tensors="pt").to(device)
27
  with torch.no_grad():
28
  outputs = model(**inputs)
29
  probability = torch.sigmoid(outputs.logits).item()