Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import torch | |
| import torchvision.transforms as transforms | |
| from PIL import Image | |
| from torchvision.models import resnet50 | |
| # Load model | |
| model = resnet50(pretrained=False) | |
| model.fc = nn.Linear(model.fc.in_features, 10) | |
| model.load_state_dict(torch.load('best_model.pth')) | |
| model.eval() | |
| # Define classes (for CIFAR-10) | |
| classes = ['airplane', 'automobile', 'bird', 'cat', 'deer', | |
| 'dog', 'frog', 'horse', 'ship', 'truck'] | |
| def predict(image): | |
| transform = transforms.Compose([ | |
| transforms.Resize(224), | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
| ]) | |
| img_tensor = transform(image).unsqueeze(0) | |
| with torch.no_grad(): | |
| outputs = model(img_tensor) | |
| _, predicted = outputs.max(1) | |
| return classes[predicted.item()] | |
| # Create Gradio interface | |
| iface = gr.Interface( | |
| fn=predict, | |
| inputs=gr.Image(type="pil"), | |
| outputs=gr.Label(num_top_classes=1), | |
| examples=[["example1.jpg"], ["example2.jpg"]] | |
| ) | |
| iface.launch() |