Spaces:
Runtime error
Runtime error
import gradio as gr | |
from keras.preprocessing import image | |
from keras.preprocessing.image import img_to_array | |
from keras.models import load_model | |
import numpy as np | |
# Load the pre-trained model from the local path | |
model_path = 'Mango.h5' | |
model = load_model(model_path) | |
def predict_disease(image_file, model, all_labels): | |
""" | |
Predict the disease from an image using the trained model. | |
Parameters: | |
- image_file: image, input image file | |
- model: Keras model, trained convolutional neural network | |
- all_labels: list, list of class labels | |
Returns: | |
- str, predicted class label | |
""" | |
try: | |
# Load and preprocess the image | |
img = image.load_img(image_file, target_size=(256, 256)) | |
img_array = img_to_array(img) | |
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension | |
img_array = img_array / 255.0 # Normalize the image | |
# Predict the class | |
predictions = model.predict(img_array) | |
predicted_class = np.argmax(predictions[0]) | |
# Return the class label | |
return all_labels[predicted_class] | |
except Exception as e: | |
print(f"Error: {e}") | |
return None | |
# List of class labels | |
all_labels = ['Mango Anthracrose','Mango Bacterial Cancker','Mango Cutting weevil','Mango Die Back','Mango Gall Midge','Mango Healthy','Mango powdery mildew','Mango Sooty Mould'] | |
# Define the Gradio interface | |
def gradio_predict(image_file): | |
return predict_disease(image_file, model, all_labels) | |
# Create a Gradio interface | |
gr_interface = gr.Interface( | |
fn=gradio_predict, # Function to call for predictions | |
inputs=gr.Image(type="filepath"), # Upload image as file path | |
outputs="text", # Output will be the class label as text | |
title="Plant Disease Predictor", | |
description="Upload an image of a plant to predict the disease.", | |
) | |
# Launch the Gradio app | |
gr_interface.launch() | |