Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,3 @@
|
|
| 1 |
-
from pdfminer.high_level import extract_pages
|
| 2 |
-
from pdfminer.layout import LTTextContainer
|
| 3 |
import re
|
| 4 |
import gradio as gr
|
| 5 |
import os
|
|
@@ -10,15 +8,14 @@ import subprocess
|
|
| 10 |
from huggingface_hub import hf_hub_download
|
| 11 |
from llama_cpp import Llama
|
| 12 |
from huggingface_hub import login
|
| 13 |
-
# from docling.document_converter import DocumentConverter
|
| 14 |
|
| 15 |
login(token = os.getenv('HF_TOKEN'))
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
| 19 |
|
| 20 |
-
repo_id = "QuantFactory/Meta-Llama-3-70B-Instruct-GGUF"
|
| 21 |
-
model_id = "Meta-Llama-3-70B-Instruct.Q2_K.gguf"
|
| 22 |
|
| 23 |
local_dir = "models"
|
| 24 |
|
|
@@ -28,175 +25,42 @@ hf_hub_download(
|
|
| 28 |
local_dir = local_dir
|
| 29 |
)
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
def process_page(extracted_page):
|
| 42 |
-
content = []
|
| 43 |
-
elements = [element for element in extracted_page._objs]
|
| 44 |
-
elements.sort(key=lambda a: a.y1, reverse=True)
|
| 45 |
-
for i, element in enumerate(elements):
|
| 46 |
-
if isinstance(element, LTTextContainer):
|
| 47 |
-
line_text = extract_text_and_normalize(element)
|
| 48 |
-
content.append(line_text)
|
| 49 |
-
content = re.sub('\n+', '\n', ''.join(content))
|
| 50 |
-
return content
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
def extract_text_and_normalize(element):
|
| 54 |
-
# Extract text from line and split it with new lines
|
| 55 |
-
line_texts = element.get_text().split('\n')
|
| 56 |
-
norm_text = ''
|
| 57 |
-
for line_text in line_texts:
|
| 58 |
-
line_text = line_text.strip()
|
| 59 |
-
if not line_text:
|
| 60 |
-
line_text = '\n'
|
| 61 |
-
else:
|
| 62 |
-
line_text = re.sub('\s+', ' ', line_text)
|
| 63 |
-
if not re.search('[\w\d\,\-]', line_text[-1]):
|
| 64 |
-
line_text += '\n'
|
| 65 |
-
else:
|
| 66 |
-
line_text += ' '
|
| 67 |
-
norm_text += line_text
|
| 68 |
-
return norm_text
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
def txt_to_html(text):
|
| 72 |
-
html_content = "<html><body>"
|
| 73 |
-
for line in text.split('\n'):
|
| 74 |
-
html_content += "<p>{}</p>".format(line.strip())
|
| 75 |
-
html_content += "</body></html>"
|
| 76 |
-
return html_content
|
| 77 |
-
|
| 78 |
-
def harmonize_doc(llm, pdftext, prompt, maxtokens, temperature, top_probability, model_name):
|
| 79 |
-
print('PDFText is ',pdftext)
|
| 80 |
-
|
| 81 |
-
# prompt = '''
|
| 82 |
-
# Standardize the following colonoscopy report into the structured format. Extract all information as-is from the PDFs, making no changes to content. For fields that aren’t available in a report, use 'N/A'.
|
| 83 |
-
# Structure as follows: 1. Patient Information: Name, date of birth, gender, address, and any ID numbers.
|
| 84 |
-
# 2. Procedure Details: Date, hospital, referring doctor, endoscopist, priority, and premedication.
|
| 85 |
-
# 3. Findings from report
|
| 86 |
-
# 4. Procedure Summary
|
| 87 |
-
# 5. Diagnosis and Follow-Up/Advice
|
| 88 |
-
# '''
|
| 89 |
-
|
| 90 |
-
# prompt = "Please harmonize the following medical endoscopy report into a consistent format. The report should include the following standardized sections: Hospital Name, Patient Information (Name, NHS Number, Hospital Number, Date of Birth, Address), Date of Procedure, Referring Consultant, Endoscopist, Instrument Used, Medication, Patient Sedation, Indications for Procedure, Co-morbidities, Extent of Exam, Findings (site-by-site), Biopsy Details, Diagnosis, Management Plan, Follow-Up, and Additional Comments. If any information is not provided in the report, write 'N/A' for that field. Ensure that both reports follow this structure for clarity and consistency."
|
| 91 |
-
|
| 92 |
-
prompt = """
|
| 93 |
-
Please reformat the provided medical report into the following standardized structure:
|
| 94 |
-
|
| 95 |
-
1. Hospital Information:
|
| 96 |
-
- Name of Hospital: [Name of hospital]
|
| 97 |
-
- Department: [Relevant department or 'N/A']
|
| 98 |
-
|
| 99 |
-
2. Patient Information:
|
| 100 |
-
- Name: [Full Name]
|
| 101 |
-
- Gender: [Gender]
|
| 102 |
-
- Date of Birth: [Date of Birth]
|
| 103 |
-
- Address: [Full Address or 'N/A']
|
| 104 |
-
- ID Numbers:
|
| 105 |
-
- [Relevant identifiers such as NHS Number, Case Number, etc.]
|
| 106 |
-
|
| 107 |
-
3. Procedure Details:
|
| 108 |
-
- Date of Procedure: [Date]
|
| 109 |
-
- Referring Doctor: [Name or 'N/A']
|
| 110 |
-
- Performed By:
|
| 111 |
-
- Consultant: [Name or 'N/A']
|
| 112 |
-
- Additional Clinicians: [Name(s) or 'N/A']
|
| 113 |
-
- Nurses: [Name(s) or 'N/A']
|
| 114 |
-
- Details:
|
| 115 |
-
- Indications: [Symptoms, reasons for procedure]
|
| 116 |
-
- Instrument: [Instrument details or 'N/A']
|
| 117 |
-
- Co-morbidities: [Relevant conditions or 'N/A']
|
| 118 |
-
- ASA Status: [ASA classification or 'N/A']
|
| 119 |
-
- Procedure: [Details of patient preparation and exact description of procedures performed as in the original report or 'N/A']
|
| 120 |
-
- Findings: [Exact findings from the report, including any locations, measurements, or observations]
|
| 121 |
-
- Specimens Taken: [Details on specimens, if any, or 'N/A']
|
| 122 |
-
- Comments: [Additional notes, advice, or remarks from the report]
|
| 123 |
-
|
| 124 |
-
4. Diagnosis and Outcomes:
|
| 125 |
-
- Diagnosis: [Exact diagnosis or 'N/A']
|
| 126 |
-
- Therapeutic Actions: [Treatments performed or 'N/A']
|
| 127 |
-
- Complications: [Details on complications or 'No complications']
|
| 128 |
-
- Follow-Up: [Exact follow-up recommendations from the report]
|
| 129 |
-
|
| 130 |
-
Instructions for Output:
|
| 131 |
-
1. Use the exact wording and details from the original report wherever possible. Do not summarize or interpret information.
|
| 132 |
-
2. If any information is missing in the original report, use 'N/A' for the corresponding field.
|
| 133 |
-
3. Ensure the output matches the above structure exactly pointwise, without omitting any fields.
|
| 134 |
-
4. Retain all medical terms, values, and phrases as stated in the report.
|
| 135 |
-
"""
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
output = llm.create_chat_completion(
|
| 140 |
messages=[
|
| 141 |
{"role": "assistant", "content": prompt},
|
| 142 |
{
|
| 143 |
"role": "user",
|
| 144 |
-
"content":
|
| 145 |
}
|
| 146 |
],
|
| 147 |
max_tokens=maxtokens,
|
| 148 |
temperature=temperature
|
| 149 |
)
|
| 150 |
-
|
| 151 |
output = output['choices'][0]['message']['content']
|
| 152 |
find_index = output.find(' '.join(pdftext.split()[:3]))
|
| 153 |
if find_index != -1:
|
| 154 |
output = output[find_index:].strip()
|
| 155 |
return output
|
| 156 |
|
| 157 |
-
|
| 158 |
-
@spaces.GPU(duration=120)
|
| 159 |
-
def pdf_to_text(files, input_text='', prompt='', model_name='default', temperature=0, maxtokens=2048, top_probability=0.95):
|
| 160 |
-
llm = Llama(
|
| 161 |
-
model_path="models/" + model_id,
|
| 162 |
-
flash_attn=True,
|
| 163 |
-
n_gpu_layers=81,
|
| 164 |
-
n_batch=1024,
|
| 165 |
-
n_ctx=8192,
|
| 166 |
-
)
|
| 167 |
-
# llm = Llama.from_pretrained(
|
| 168 |
-
# repo_id=local_dir,
|
| 169 |
-
# filename=model_id,
|
| 170 |
-
# )
|
| 171 |
-
harmonized_text = ''
|
| 172 |
-
for file in files:
|
| 173 |
-
page2content = process_document(file)
|
| 174 |
-
pdftext = ''
|
| 175 |
-
for page_id in page2content:
|
| 176 |
-
pdftext += page2content[page_id]
|
| 177 |
-
# converter = DocumentConverter()
|
| 178 |
-
# result = converter.convert(file)
|
| 179 |
-
# pdftext = result.document.export_to_markdown()
|
| 180 |
-
input_text = pdftext
|
| 181 |
-
harmonized_text += harmonize_doc(llm, input_text, prompt, maxtokens, temperature, top_probability, model_name)
|
| 182 |
-
harmonized_text += '\n\n-----------------------------------------------------------------\n\n'
|
| 183 |
-
print('Harmonized text is ',harmonized_text)
|
| 184 |
-
return harmonized_text, input_text
|
| 185 |
-
|
| 186 |
|
| 187 |
temp_slider = gr.Slider(minimum=0, maximum=2, value=0.9, label="Temperature Value")
|
| 188 |
-
|
| 189 |
-
max_tokens = gr.Number(value=600, label="Max Tokens")
|
| 190 |
-
input_text = gr.Text(label='Input Text')
|
| 191 |
-
input_prompt = gr.Text(label='Prompt')
|
| 192 |
-
input_files = gr.File(file_count="multiple")
|
| 193 |
-
output_path_component = gr.File(label="Select Output Path")
|
| 194 |
iface = gr.Interface(
|
| 195 |
-
fn=
|
| 196 |
-
inputs=
|
| 197 |
-
outputs=
|
| 198 |
-
title='
|
| 199 |
-
description="This application helps
|
| 200 |
theme=gr.themes.Soft(),
|
| 201 |
)
|
| 202 |
iface.launch()
|
|
|
|
|
|
|
|
|
|
| 1 |
import re
|
| 2 |
import gradio as gr
|
| 3 |
import os
|
|
|
|
| 8 |
from huggingface_hub import hf_hub_download
|
| 9 |
from llama_cpp import Llama
|
| 10 |
from huggingface_hub import login
|
|
|
|
| 11 |
|
| 12 |
login(token = os.getenv('HF_TOKEN'))
|
| 13 |
|
| 14 |
+
repo_id = "QuantFactory/Meta-Llama-3-8B-Instruct-GGUF-v2"
|
| 15 |
+
model_id = "Meta-Llama-3-8B-Instruct-v2.Q2_K.gguf"
|
| 16 |
|
| 17 |
+
# repo_id = "QuantFactory/Meta-Llama-3-70B-Instruct-GGUF"
|
| 18 |
+
# model_id = "Meta-Llama-3-70B-Instruct.Q2_K.gguf"
|
| 19 |
|
| 20 |
local_dir = "models"
|
| 21 |
|
|
|
|
| 25 |
local_dir = local_dir
|
| 26 |
)
|
| 27 |
|
| 28 |
+
@spaces.GPU(duration=120)
|
| 29 |
+
def get_itinerary(llm, information, maxtokens, temperature, top_probability):
|
| 30 |
+
llm = Llama(
|
| 31 |
+
model_path="models/" + model_id,
|
| 32 |
+
flash_attn=True,
|
| 33 |
+
n_gpu_layers=81,
|
| 34 |
+
n_batch=1024,
|
| 35 |
+
n_ctx=8192,
|
| 36 |
+
)
|
| 37 |
+
prompt = "Please prepare a nice and fancy itinerary for the place and information provided following: "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
output = llm.create_chat_completion(
|
| 39 |
messages=[
|
| 40 |
{"role": "assistant", "content": prompt},
|
| 41 |
{
|
| 42 |
"role": "user",
|
| 43 |
+
"content": information
|
| 44 |
}
|
| 45 |
],
|
| 46 |
max_tokens=maxtokens,
|
| 47 |
temperature=temperature
|
| 48 |
)
|
|
|
|
| 49 |
output = output['choices'][0]['message']['content']
|
| 50 |
find_index = output.find(' '.join(pdftext.split()[:3]))
|
| 51 |
if find_index != -1:
|
| 52 |
output = output[find_index:].strip()
|
| 53 |
return output
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
temp_slider = gr.Slider(minimum=0, maximum=2, value=0.9, label="Temperature Value")
|
| 57 |
+
max_tokens = gr.Number(value=1000, label="Max Tokens")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
iface = gr.Interface(
|
| 59 |
+
fn=get_itinerary,
|
| 60 |
+
inputs='text',
|
| 61 |
+
outputs='text',
|
| 62 |
+
title='VoyageX',
|
| 63 |
+
description="This application helps building itinerary",
|
| 64 |
theme=gr.themes.Soft(),
|
| 65 |
)
|
| 66 |
iface.launch()
|