import gradio as gr import os from pathlib import Path import json import csv import pandas as pd from tqdm import tqdm api_token = os.getenv("HF_TOKEN") from langchain_community.vectorstores import FAISS from langchain_community.document_loaders import PyPDFLoader, TextLoader, CSVLoader, JSONLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.vectorstores import Chroma from langchain.chains import ConversationalRetrievalChain from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.llms import HuggingFacePipeline from langchain.chains import ConversationChain from langchain.memory import ConversationBufferMemory from langchain_community.llms import HuggingFaceEndpoint import torch # import spaces list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"] list_llm_simple = [os.path.basename(llm) for llm in list_llm] # Load and split documents of various types def load_doc(list_file_path, progress=gr.Progress()): doc_splits = [] progress(0, desc="Preparing to load documents") total_files = len(list_file_path) for i, file_path in enumerate(list_file_path): progress((i/total_files) * 0.5, desc=f"Loading {Path(file_path).name}") file_ext = Path(file_path).suffix.lower() try: # PDF documents if file_ext == '.pdf': loader = PyPDFLoader(file_path) pages = loader.load() doc_splits.extend(split_documents(pages)) # Text-based documents elif file_ext in ['.txt', '.md', '.py', '.js', '.html', '.css']: loader = TextLoader(file_path) documents = loader.load() doc_splits.extend(split_documents(documents)) # CSV files elif file_ext == '.csv': loader = CSVLoader(file_path) documents = loader.load() doc_splits.extend(split_documents(documents)) # JSON files elif file_ext in ['.json', '.jsonl']: # For JSON, we need to determine if it's JSON or JSONL with open(file_path, 'r') as f: content = f.read().strip() if content.startswith('[') or content.startswith('{'): # Regular JSON loader = JSONLoader( file_path=file_path, jq_schema='.', text_content=False ) documents = loader.load() doc_splits.extend(split_documents(documents)) else: # JSONL - process line by line documents = [] with open(file_path, 'r') as f: for line in f: if line.strip(): try: json_obj = json.loads(line) text = json.dumps(json_obj) documents.append(text) except json.JSONDecodeError: continue text_splitter = RecursiveCharacterTextSplitter( chunk_size=1024, chunk_overlap=64 ) doc_splits.extend(text_splitter.create_documents(documents)) except Exception as e: print(f"Error processing {file_path}: {str(e)}") continue progress(0.5 + (i/total_files) * 0.5, desc=f"Processed {Path(file_path).name}") return doc_splits # Helper function to split documents def split_documents(documents): text_splitter = RecursiveCharacterTextSplitter( chunk_size=1024, chunk_overlap=64 ) return text_splitter.split_documents(documents) # Create vector database def create_db(splits, progress=gr.Progress()): progress(0, desc="Creating vector database") embeddings = HuggingFaceEmbeddings() # Create vectors with progress bar total_chunks = len(splits) vectordb = FAISS.from_documents( documents=splits, embedding=embeddings ) progress(1.0, desc="Vector database creation complete") return vectordb # Initialize langchain LLM chain def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): progress(0, desc=f"Initializing {llm_model}") if llm_model == "meta-llama/Meta-Llama-3-8B-Instruct": llm = HuggingFaceEndpoint( repo_id=llm_model, huggingfacehub_api_token=api_token, temperature=temperature, max_new_tokens=max_tokens, top_k=top_k, ) else: llm = HuggingFaceEndpoint( huggingfacehub_api_token=api_token, repo_id=llm_model, temperature=temperature, max_new_tokens=max_tokens, top_k=top_k, ) progress(0.5, desc="Setting up memory and retriever") memory = ConversationBufferMemory( memory_key="chat_history", output_key='answer', return_messages=True ) retriever = vector_db.as_retriever() qa_chain = ConversationalRetrievalChain.from_llm( llm, retriever=retriever, chain_type="stuff", memory=memory, return_source_documents=True, verbose=False, ) progress(1.0, desc="LLM chain initialized") return qa_chain # Initialize database def initialize_database(list_file_obj, progress=gr.Progress()): # Create a list of documents (when valid) list_file_path = [x.name for x in list_file_obj if x is not None] if not list_file_path: return None, "No valid files uploaded. Please upload at least one file." # Load document and create splits doc_splits = load_doc(list_file_path, progress) if not doc_splits: return None, "Could not extract any text from the uploaded files." # Create or load vector database vector_db = create_db(doc_splits, progress) # Count documents by type file_types = {} for path in list_file_path: ext = Path(path).suffix.lower() file_types[ext] = file_types.get(ext, 0) + 1 file_type_summary = ", ".join([f"{count} {ext}" for ext, count in file_types.items()]) return vector_db, f"Database created with {len(doc_splits)} chunks from {len(list_file_path)} files ({file_type_summary})!" # Initialize LLM def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): if vector_db is None: return None, "Please create a vector database first!" llm_name = list_llm[llm_option] print("llm_name: ", llm_name) qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress) return qa_chain, f"QA chain initialized with {llm_name}. Chatbot is ready!" def format_chat_history(message, chat_history): formatted_chat_history = [] for user_message, bot_message in chat_history: formatted_chat_history.append(f"User: {user_message}") formatted_chat_history.append(f"Assistant: {bot_message}") return formatted_chat_history def conversation(qa_chain, message, history): if qa_chain is None: return None, gr.update(value=""), history, "Please initialize the chatbot first!", 0, "", 0, "", 0 formatted_chat_history = format_chat_history(message, history) # Generate response using QA chain response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history}) response_answer = response["answer"] if response_answer.find("Helpful Answer:") != -1: response_answer = response_answer.split("Helpful Answer:")[-1] response_sources = response["source_documents"] # Handle source documents source_contents = ["", "", ""] source_pages = [0, 0, 0] for i, source in enumerate(response_sources[:3]): source_contents[i] = source.page_content.strip() # Check if the metadata contains a page number if "page" in source.metadata: source_pages[i] = source.metadata["page"] + 1 elif "source" in source.metadata: source_pages[i] = 1 source_contents[i] = f"From: {source.metadata['source']}\n{source_contents[i]}" # Append user message and response to chat history new_history = history + [(message, response_answer)] return qa_chain, gr.update(value=""), new_history, source_contents[0], source_pages[0], source_contents[1], source_pages[1], source_contents[2], source_pages[2] def get_file_icon(file_path): """Return an appropriate emoji icon based on file extension""" ext = Path(file_path).suffix.lower() icons = { '.pdf': '📄', '.txt': '📝', '.md': '📋', '.py': '🐍', '.js': '⚙️', '.json': '📊', '.jsonl': '📊', '.csv': '📈', '.html': '🌐', '.css': '🎨', } return icons.get(ext, '📁') def display_file_list(file_obj): if not file_obj: return "No files uploaded yet" file_list = [f"{get_file_icon(x.name)} {Path(x.name).name}" for x in file_obj if x is not None] return "\n".join(file_list) def demo(): with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo", secondary_hue="blue", neutral_hue="sky")) as demo: vector_db = gr.State() qa_chain = gr.State() gr.HTML("

📚 Enhanced RAG Chatbot

") gr.Markdown("""Query your documents! This enhanced AI agent performs retrieval augmented generation (RAG) on various document types including PDFs, text files, markdown, code files, and structured data (CSV, JSON, JSONL). Please do not upload confidential documents. """) with gr.Row(): with gr.Column(scale=86): gr.Markdown("Step 1 - Upload Documents and Initialize RAG Pipeline") with gr.Row(): with gr.Column(scale=7): document = gr.Files( height=300, file_count="multiple", file_types=[".pdf", ".txt", ".md", ".py", ".js", ".json", ".jsonl", ".csv", ".html", ".css"], interactive=True, label="Upload Documents" ) with gr.Column(scale=3): file_list = gr.Textbox( label="Uploaded Files", value="No files uploaded yet", interactive=False, lines=12 ) document.upload( display_file_list, inputs=[document], outputs=[file_list] ) with gr.Row(): db_btn = gr.Button("Create Vector Database", variant="primary") with gr.Row(): db_progress = gr.Textbox( value="Not initialized", show_label=False, container=True ) gr.Markdown("Step 2 - Select LLM and Parameters") with gr.Row(): llm_btn = gr.Radio( list_llm_simple, label="Available LLMs", value=list_llm_simple[0], type="index" ) with gr.Row(): with gr.Accordion("LLM Parameters", open=False): with gr.Row(): slider_temperature = gr.Slider( minimum=0.01, maximum=1.0, value=0.5, step=0.1, label="Temperature", info="Controls randomness in generation", interactive=True ) with gr.Row(): slider_maxtokens = gr.Slider( minimum=128, maximum=9192, value=4096, step=128, label="Max New Tokens", info="Maximum tokens to generate", interactive=True ) with gr.Row(): slider_topk = gr.Slider( minimum=1, maximum=10, value=3, step=1, label="Top-k", info="Number of tokens to consider", interactive=True ) with gr.Row(): qachain_btn = gr.Button("Initialize Chatbot", variant="primary") with gr.Row(): llm_progress = gr.Textbox( value="Not initialized", show_label=False, container=True ) with gr.Column(scale=200): gr.Markdown("Step 3 - Chat with Your Documents") chatbot = gr.Chatbot(height=505) with gr.Accordion("Relevant Context from Documents", open=False): with gr.Row(): doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20) source1_page = gr.Number(label="Page", scale=1) with gr.Row(): doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20) source2_page = gr.Number(label="Page", scale=1) with gr.Row(): doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20) source3_page = gr.Number(label="Page", scale=1) with gr.Row(): msg = gr.Textbox( placeholder="Ask a question about your documents...", container=True, lines=2 ) with gr.Row(): submit_btn = gr.Button("Submit", variant="primary") clear_btn = gr.ClearButton([msg, chatbot], value="Clear") # Preprocessing events db_btn.click( initialize_database, inputs=[document], outputs=[vector_db, db_progress] ) qachain_btn.click( initialize_LLM, inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], outputs=[qa_chain, llm_progress] ).then( lambda:[None,"",0,"",0,"",0], inputs=None, outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False ) # Chatbot events msg.submit( conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False ) submit_btn.click( conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False ) clear_btn.click( lambda:[None,"",0,"",0,"",0], inputs=None, outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False ) demo.queue().launch(debug=True) if __name__ == "__main__": demo()