Spaces:
Sleeping
Sleeping
File size: 17,027 Bytes
58486c5 43ac004 d93c60d 43ac004 7883913 43ac004 d93c60d 43ac004 d12a540 b355172 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 43ac004 d93c60d 74f5196 43ac004 d93c60d 43ac004 cb8f33a 43ac004 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
import gradio as gr
import os
from pathlib import Path
import json
import csv
import pandas as pd
from tqdm import tqdm
api_token = os.getenv("HF_TOKEN")
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader, TextLoader, CSVLoader, JSONLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain_community.llms import HuggingFaceEndpoint
import torch
# import spaces
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
# Load and split documents of various types
def load_doc(list_file_path, progress=gr.Progress()):
doc_splits = []
progress(0, desc="Preparing to load documents")
total_files = len(list_file_path)
for i, file_path in enumerate(list_file_path):
progress((i/total_files) * 0.5, desc=f"Loading {Path(file_path).name}")
file_ext = Path(file_path).suffix.lower()
try:
# PDF documents
if file_ext == '.pdf':
loader = PyPDFLoader(file_path)
pages = loader.load()
doc_splits.extend(split_documents(pages))
# Text-based documents
elif file_ext in ['.txt', '.md', '.py', '.js', '.html', '.css']:
loader = TextLoader(file_path)
documents = loader.load()
doc_splits.extend(split_documents(documents))
# CSV files
elif file_ext == '.csv':
loader = CSVLoader(file_path)
documents = loader.load()
doc_splits.extend(split_documents(documents))
# JSON files
elif file_ext in ['.json', '.jsonl']:
# For JSON, we need to determine if it's JSON or JSONL
with open(file_path, 'r') as f:
content = f.read().strip()
if content.startswith('[') or content.startswith('{'):
# Regular JSON
loader = JSONLoader(
file_path=file_path,
jq_schema='.',
text_content=False
)
documents = loader.load()
doc_splits.extend(split_documents(documents))
else:
# JSONL - process line by line
documents = []
with open(file_path, 'r') as f:
for line in f:
if line.strip():
try:
json_obj = json.loads(line)
text = json.dumps(json_obj)
documents.append(text)
except json.JSONDecodeError:
continue
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1024,
chunk_overlap=64
)
doc_splits.extend(text_splitter.create_documents(documents))
except Exception as e:
print(f"Error processing {file_path}: {str(e)}")
continue
progress(0.5 + (i/total_files) * 0.5, desc=f"Processed {Path(file_path).name}")
return doc_splits
# Helper function to split documents
def split_documents(documents):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1024,
chunk_overlap=64
)
return text_splitter.split_documents(documents)
# Create vector database
def create_db(splits, progress=gr.Progress()):
progress(0, desc="Creating vector database")
embeddings = HuggingFaceEmbeddings()
# Create vectors with progress bar
total_chunks = len(splits)
vectordb = FAISS.from_documents(
documents=splits,
embedding=embeddings
)
progress(1.0, desc="Vector database creation complete")
return vectordb
# Initialize langchain LLM chain
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
progress(0, desc=f"Initializing {llm_model}")
if llm_model == "meta-llama/Meta-Llama-3-8B-Instruct":
llm = HuggingFaceEndpoint(
repo_id=llm_model,
huggingfacehub_api_token=api_token,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k,
)
else:
llm = HuggingFaceEndpoint(
huggingfacehub_api_token=api_token,
repo_id=llm_model,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k,
)
progress(0.5, desc="Setting up memory and retriever")
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
retriever = vector_db.as_retriever()
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False,
)
progress(1.0, desc="LLM chain initialized")
return qa_chain
# Initialize database
def initialize_database(list_file_obj, progress=gr.Progress()):
# Create a list of documents (when valid)
list_file_path = [x.name for x in list_file_obj if x is not None]
if not list_file_path:
return None, "No valid files uploaded. Please upload at least one file."
# Load document and create splits
doc_splits = load_doc(list_file_path, progress)
if not doc_splits:
return None, "Could not extract any text from the uploaded files."
# Create or load vector database
vector_db = create_db(doc_splits, progress)
# Count documents by type
file_types = {}
for path in list_file_path:
ext = Path(path).suffix.lower()
file_types[ext] = file_types.get(ext, 0) + 1
file_type_summary = ", ".join([f"{count} {ext}" for ext, count in file_types.items()])
return vector_db, f"Database created with {len(doc_splits)} chunks from {len(list_file_path)} files ({file_type_summary})!"
# Initialize LLM
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
if vector_db is None:
return None, "Please create a vector database first!"
llm_name = list_llm[llm_option]
print("llm_name: ", llm_name)
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
return qa_chain, f"QA chain initialized with {llm_name}. Chatbot is ready!"
def format_chat_history(message, chat_history):
formatted_chat_history = []
for user_message, bot_message in chat_history:
formatted_chat_history.append(f"User: {user_message}")
formatted_chat_history.append(f"Assistant: {bot_message}")
return formatted_chat_history
def conversation(qa_chain, message, history):
if qa_chain is None:
return None, gr.update(value=""), history, "Please initialize the chatbot first!", 0, "", 0, "", 0
formatted_chat_history = format_chat_history(message, history)
# Generate response using QA chain
response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
if response_answer.find("Helpful Answer:") != -1:
response_answer = response_answer.split("Helpful Answer:")[-1]
response_sources = response["source_documents"]
# Handle source documents
source_contents = ["", "", ""]
source_pages = [0, 0, 0]
for i, source in enumerate(response_sources[:3]):
source_contents[i] = source.page_content.strip()
# Check if the metadata contains a page number
if "page" in source.metadata:
source_pages[i] = source.metadata["page"] + 1
elif "source" in source.metadata:
source_pages[i] = 1
source_contents[i] = f"From: {source.metadata['source']}\n{source_contents[i]}"
# Append user message and response to chat history
new_history = history + [(message, response_answer)]
return qa_chain, gr.update(value=""), new_history, source_contents[0], source_pages[0], source_contents[1], source_pages[1], source_contents[2], source_pages[2]
def get_file_icon(file_path):
"""Return an appropriate emoji icon based on file extension"""
ext = Path(file_path).suffix.lower()
icons = {
'.pdf': 'π',
'.txt': 'π',
'.md': 'π',
'.py': 'π',
'.js': 'βοΈ',
'.json': 'π',
'.jsonl': 'π',
'.csv': 'π',
'.html': 'π',
'.css': 'π¨',
}
return icons.get(ext, 'π')
def display_file_list(file_obj):
if not file_obj:
return "No files uploaded yet"
file_list = [f"{get_file_icon(x.name)} {Path(x.name).name}" for x in file_obj if x is not None]
return "\n".join(file_list)
def demo():
with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo", secondary_hue="blue", neutral_hue="sky")) as demo:
vector_db = gr.State()
qa_chain = gr.State()
gr.HTML("<center><h1>π Enhanced RAG Chatbot</h1></center>")
gr.Markdown("""<b>Query your documents!</b> This enhanced AI agent performs retrieval augmented generation (RAG) on various document types
including PDFs, text files, markdown, code files, and structured data (CSV, JSON, JSONL). <b>Please do not upload confidential documents.</b>
""")
with gr.Row():
with gr.Column(scale=86):
gr.Markdown("<b>Step 1 - Upload Documents and Initialize RAG Pipeline</b>")
with gr.Row():
with gr.Column(scale=7):
document = gr.Files(
height=300,
file_count="multiple",
file_types=[".pdf", ".txt", ".md", ".py", ".js", ".json", ".jsonl", ".csv", ".html", ".css"],
interactive=True,
label="Upload Documents"
)
with gr.Column(scale=3):
file_list = gr.Textbox(
label="Uploaded Files",
value="No files uploaded yet",
interactive=False,
lines=12
)
document.upload(
display_file_list,
inputs=[document],
outputs=[file_list]
)
with gr.Row():
db_btn = gr.Button("Create Vector Database", variant="primary")
with gr.Row():
db_progress = gr.Textbox(
value="Not initialized",
show_label=False,
container=True
)
gr.Markdown("<b>Step 2 - Select LLM and Parameters</b>")
with gr.Row():
llm_btn = gr.Radio(
list_llm_simple,
label="Available LLMs",
value=list_llm_simple[0],
type="index"
)
with gr.Row():
with gr.Accordion("LLM Parameters", open=False):
with gr.Row():
slider_temperature = gr.Slider(
minimum=0.01,
maximum=1.0,
value=0.5,
step=0.1,
label="Temperature",
info="Controls randomness in generation",
interactive=True
)
with gr.Row():
slider_maxtokens = gr.Slider(
minimum=128,
maximum=9192,
value=4096,
step=128,
label="Max New Tokens",
info="Maximum tokens to generate",
interactive=True
)
with gr.Row():
slider_topk = gr.Slider(
minimum=1,
maximum=10,
value=3,
step=1,
label="Top-k",
info="Number of tokens to consider",
interactive=True
)
with gr.Row():
qachain_btn = gr.Button("Initialize Chatbot", variant="primary")
with gr.Row():
llm_progress = gr.Textbox(
value="Not initialized",
show_label=False,
container=True
)
with gr.Column(scale=200):
gr.Markdown("<b>Step 3 - Chat with Your Documents</b>")
chatbot = gr.Chatbot(height=505)
with gr.Accordion("Relevant Context from Documents", open=False):
with gr.Row():
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
source1_page = gr.Number(label="Page", scale=1)
with gr.Row():
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
source2_page = gr.Number(label="Page", scale=1)
with gr.Row():
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
source3_page = gr.Number(label="Page", scale=1)
with gr.Row():
msg = gr.Textbox(
placeholder="Ask a question about your documents...",
container=True,
lines=2
)
with gr.Row():
submit_btn = gr.Button("Submit", variant="primary")
clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
# Preprocessing events
db_btn.click(
initialize_database,
inputs=[document],
outputs=[vector_db, db_progress]
)
qachain_btn.click(
initialize_LLM,
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db],
outputs=[qa_chain, llm_progress]
).then(
lambda:[None,"",0,"",0,"",0],
inputs=None,
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
# Chatbot events
msg.submit(
conversation,
inputs=[qa_chain, msg, chatbot],
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
submit_btn.click(
conversation,
inputs=[qa_chain, msg, chatbot],
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
clear_btn.click(
lambda:[None,"",0,"",0,"",0],
inputs=None,
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
demo.queue().launch(debug=True)
if __name__ == "__main__":
demo() |