Update app.py
Browse files
app.py
CHANGED
@@ -16,14 +16,13 @@ from collections import Counter
|
|
16 |
device = torch.device("cpu")
|
17 |
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
|
18 |
model = Wav2Vec2ForSequenceClassification.from_pretrained("facebook/wav2vec2-base-960h", num_labels=2).to(device)
|
19 |
-
|
20 |
# model_path = 'model_weights2.pth'
|
21 |
-
model_path = '/home/user/app/dysarthria_classifier10.pth'
|
22 |
-
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
|
28 |
|
29 |
title = "Upload an mp3 file for parkinsons detection! (Thai Language)"
|
@@ -65,13 +64,13 @@ def predict(file_path):
|
|
65 |
predicted_class_id = torch.argmax(logits, dim=-1).item()
|
66 |
|
67 |
return predicted_class_id
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
|
76 |
-
iface = gr.Interface(fn=predict, inputs="file", outputs="text")
|
77 |
-
iface.launch()
|
|
|
16 |
device = torch.device("cpu")
|
17 |
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
|
18 |
model = Wav2Vec2ForSequenceClassification.from_pretrained("facebook/wav2vec2-base-960h", num_labels=2).to(device)
|
19 |
+
model_path = "dysarthria_classifier12.pth"
|
20 |
# model_path = 'model_weights2.pth'
|
21 |
+
# model_path = '/home/user/app/dysarthria_classifier10.pth'
|
|
|
22 |
|
23 |
+
if os.path.exists(model_path):
|
24 |
+
print(f"Loading saved model {model_path}")
|
25 |
+
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
|
26 |
|
27 |
|
28 |
title = "Upload an mp3 file for parkinsons detection! (Thai Language)"
|
|
|
64 |
predicted_class_id = torch.argmax(logits, dim=-1).item()
|
65 |
|
66 |
return predicted_class_id
|
67 |
+
gr.Interface(
|
68 |
+
fn=predict,
|
69 |
+
inputs="file",
|
70 |
+
outputs="text",
|
71 |
+
title=title,
|
72 |
+
description=description,
|
73 |
+
).launch()
|
74 |
|
75 |
+
# iface = gr.Interface(fn=predict, inputs="file", outputs="text")
|
76 |
+
# iface.launch()
|