Update app.py
Browse files
app.py
CHANGED
|
@@ -12,13 +12,14 @@ import torch.nn.functional as F
|
|
| 12 |
from torch.utils.data import Dataset, DataLoader
|
| 13 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, Wav2Vec2ForSequenceClassification
|
| 14 |
from collections import Counter
|
|
|
|
|
|
|
| 15 |
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
|
| 16 |
model = Wav2Vec2ForSequenceClassification.from_pretrained("facebook/wav2vec2-base-960h", num_labels=2).to(device)
|
| 17 |
model_path = "dysarthria_classifier12.pth"
|
| 18 |
if os.path.exists(model_path):
|
| 19 |
print(f"Loading saved model {model_path}")
|
| 20 |
model.load_state_dict(torch.load(model_path))
|
| 21 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 22 |
def predict(file_path):
|
| 23 |
max_length = 100000
|
| 24 |
|
|
|
|
| 12 |
from torch.utils.data import Dataset, DataLoader
|
| 13 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, Wav2Vec2ForSequenceClassification
|
| 14 |
from collections import Counter
|
| 15 |
+
|
| 16 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 17 |
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
|
| 18 |
model = Wav2Vec2ForSequenceClassification.from_pretrained("facebook/wav2vec2-base-960h", num_labels=2).to(device)
|
| 19 |
model_path = "dysarthria_classifier12.pth"
|
| 20 |
if os.path.exists(model_path):
|
| 21 |
print(f"Loading saved model {model_path}")
|
| 22 |
model.load_state_dict(torch.load(model_path))
|
|
|
|
| 23 |
def predict(file_path):
|
| 24 |
max_length = 100000
|
| 25 |
|