import torch
import torch.nn as nn
import torch.nn.functional as F


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, in_planes, planes, stride=1):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(
            in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False
        )
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(
            planes, planes, kernel_size=3, stride=1, padding=1, bias=False
        )
        self.bn2 = nn.BatchNorm2d(planes)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion * planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(
                    in_planes,
                    self.expansion * planes,
                    kernel_size=1,
                    stride=stride,
                    bias=False,
                ),
                nn.BatchNorm2d(self.expansion * planes),
            )

    def forward(self, x):
        out = torch.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        out += self.shortcut(x)
        out = torch.relu(out)
        return out


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, in_planes, planes, stride=1):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(
            planes, planes, kernel_size=3, stride=stride, padding=1, bias=False
        )
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(
            planes, self.expansion * planes, kernel_size=1, bias=False
        )
        self.bn3 = nn.BatchNorm2d(self.expansion * planes)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion * planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(
                    in_planes,
                    self.expansion * planes,
                    kernel_size=1,
                    stride=stride,
                    bias=False,
                ),
                nn.BatchNorm2d(self.expansion * planes),
            )

    def forward(self, x):
        out = torch.relu(self.bn1(self.conv1(x)))
        out = torch.relu(self.bn2(self.conv2(out)))
        out = self.bn3(self.conv3(out))
        out += self.shortcut(x)
        out = torch.relu(out)
        return out


class ResNet(nn.Module):
    def __init__(self, block, num_blocks, num_classes=1000):
        super(ResNet, self).__init__()
        self.in_planes = 64

        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
        self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
        self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
        self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512 * block.expansion, num_classes)

    def _make_layer(self, block, planes, num_blocks, stride):
        strides = [stride] + [1] * (num_blocks - 1)
        layers = []
        for stride in strides:
            layers.append(block(self.in_planes, planes, stride))
            self.in_planes = planes * block.expansion
        return nn.Sequential(*layers)

    def forward(self, x):
        out = torch.relu(self.bn1(self.conv1(x)))
        out = self.maxpool(out)

        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)

        out = self.avgpool(out)
        out = torch.flatten(out, 1)
        out = self.fc(out)
        return out


def ResNet18(num_classes=1000):
    return ResNet(BasicBlock, [2, 2, 2, 2], num_classes)


def ResNet34(num_classes=1000):
    return ResNet(BasicBlock, [3, 4, 6, 3], num_classes)


def ResNet50(num_classes=1000):
    return ResNet(Bottleneck, [3, 4, 6, 3], num_classes)


def ResNet101(num_classes=1000):
    return ResNet(Bottleneck, [3, 4, 23, 3], num_classes)


def ResNet152(num_classes=1000):
    return ResNet(Bottleneck, [3, 8, 36, 3], num_classes)


class ClassifierHead(nn.Module):
    def __init__(self, in_features, num_classes):
        super().__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
        self.max_pool = nn.AdaptiveMaxPool2d((1, 1))

        self.classifier = nn.Sequential(
            nn.Linear(in_features * 2, 1024),
            nn.BatchNorm1d(1024),
            nn.ReLU(),
            nn.Dropout(0.5),
            nn.Linear(1024, 512),
            nn.BatchNorm1d(512),
            nn.ReLU(),
            nn.Dropout(0.3),
            nn.Linear(512, num_classes),
        )

    def forward(self, x):
        avg_pooled = self.avg_pool(x).flatten(1)
        max_pooled = self.max_pool(x).flatten(1)
        features = torch.cat([avg_pooled, max_pooled], dim=1)
        return self.classifier(features)


class ResNetUNet(ResNet):
    def __init__(self, block, num_blocks, num_classes=1000):
        super().__init__(block, num_blocks, num_classes)

        # Calculate encoder channel sizes
        self.enc_channels = [
            64,
            64 * block.expansion,
            128 * block.expansion,
            256 * block.expansion,
            512 * block.expansion,
        ]

        # Replace t_max_avg_pooling with standard avgpool
        in_features = 512 * block.expansion
        self.classifier_head = ClassifierHead(in_features, num_classes)

        # Decoder layers remain the same
        self.decoder5 = nn.Sequential(
            nn.Conv2d(2048 + 1024, 1024, 3, padding=1),
            nn.BatchNorm2d(1024),
            nn.ReLU(inplace=True),
            nn.Conv2d(1024, 512, 3, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True),
        )

        self.decoder4 = nn.Sequential(
            nn.Conv2d(512 + 512, 512, 3, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 256, 3, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True),
        )

        self.decoder3 = nn.Sequential(
            nn.Conv2d(256 + 256, 256, 3, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 128, 3, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True),
        )

        self.decoder2 = nn.Sequential(
            nn.Conv2d(128 + 64, 128, 3, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 64, 3, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True),
        )

        self.final_conv = nn.Sequential(
            nn.Conv2d(64, 32, 3, padding=1),
            nn.BatchNorm2d(32),
            nn.ReLU(inplace=True),
            nn.Conv2d(32, 1, 1),
            nn.Sigmoid(),
        )

    def forward(self, x):
        input_size = x.shape[-2:]

        # Encoder path
        x = torch.relu(self.bn1(self.conv1(x)))
        e1 = self.maxpool(x)

        e2 = self.layer1(e1)
        e3 = self.layer2(e2)
        e4 = self.layer3(e3)
        e5 = self.layer4(e4)

        # Get segmentation first
        e4_resized = F.interpolate(
            e4, size=e5.shape[-2:], mode="bilinear", align_corners=True
        )
        d5 = self.decoder5(torch.cat([e5, e4_resized], dim=1))

        e3_resized = F.interpolate(
            e3, size=d5.shape[-2:], mode="bilinear", align_corners=True
        )
        d4 = self.decoder4(torch.cat([d5, e3_resized], dim=1))

        e2_resized = F.interpolate(
            e2, size=d4.shape[-2:], mode="bilinear", align_corners=True
        )
        d3 = self.decoder3(torch.cat([d4, e2_resized], dim=1))

        e1_resized = F.interpolate(
            e1, size=d3.shape[-2:], mode="bilinear", align_corners=True
        )
        d2 = self.decoder2(torch.cat([d3, e1_resized], dim=1))

        seg_out = self.final_conv(d2)
        seg_out = F.interpolate(
            seg_out, size=input_size, mode="bilinear", align_corners=True
        )

        # Use segmentation to mask features before classification
        # Upsample segmentation mask to match feature size
        attention_mask = F.interpolate(
            seg_out, size=e5.shape[2:], mode="bilinear", align_corners=True
        )

        # Apply attention mask to features
        attended_features = e5 * (0.25 + attention_mask)

        # Use new classifier head
        cls_out = self.classifier_head(attended_features)

        return cls_out, seg_out


# Helper functions without K and T parameters
def ResNet18UNet(num_classes=1000):
    return ResNetUNet(BasicBlock, [2, 2, 2, 2], num_classes)


def ResNet34UNet(num_classes=1000):
    return ResNetUNet(BasicBlock, [3, 4, 6, 3], num_classes)


def ResNet50UNet(num_classes=1000):
    return ResNetUNet(Bottleneck, [3, 4, 6, 3], num_classes)


def ResNet101UNet(num_classes=1000):
    return ResNetUNet(Bottleneck, [3, 4, 23, 3], num_classes)


def ResNet152UNet(num_classes=1000):
    return ResNetUNet(Bottleneck, [3, 8, 36, 3], num_classes)