Spaces:
Runtime error
Runtime error
| import os | |
| import json | |
| import glob | |
| from tqdm import tqdm | |
| from huggingface_hub import HfApi, snapshot_download | |
| from src.backend.manage_requests import EvalRequest | |
| from src.backend.envs import EVAL_REQUESTS_PATH_BACKEND_SYNC | |
| from src.envs import QUEUE_REPO, API | |
| from src.envs import EVAL_REQUESTS_PATH_OPEN_LLM, QUEUE_REPO_OPEN_LLM | |
| from src.utils import my_snapshot_download | |
| def my_set_eval_request(api, json_filepath, hf_repo, local_dir): | |
| for i in range(10): | |
| try: | |
| set_eval_request(api=api, json_filepath=json_filepath, hf_repo=hf_repo, local_dir=local_dir) | |
| return | |
| except Exception: | |
| time.sleep(60) | |
| return | |
| def set_eval_request(api: HfApi, json_filepath: str, hf_repo: str, local_dir: str): | |
| """Updates a given eval request with its new status on the hub (running, completed, failed, ...)""" | |
| with open(json_filepath) as fp: | |
| data = json.load(fp) | |
| with open(json_filepath, "w") as f: | |
| f.write(json.dumps(data)) | |
| api.upload_file( | |
| path_or_fileobj=json_filepath, | |
| path_in_repo=json_filepath.replace(local_dir, ""), | |
| repo_id=hf_repo, | |
| repo_type="dataset", | |
| ) | |
| def get_request_file_for_model(data, requests_path): | |
| model_name = data["model"] | |
| precision = data["precision"] | |
| """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED and RUNNING""" | |
| request_files = os.path.join( | |
| requests_path, | |
| f"{model_name}_eval_request_*.json", | |
| ) | |
| request_files = glob.glob(request_files) | |
| # Select correct request file (precision) | |
| request_file = "" | |
| request_files = sorted(request_files, reverse=True) | |
| for tmp_request_file in request_files: | |
| with open(tmp_request_file, "r") as f: | |
| req_content = json.load(f) | |
| if req_content["precision"] == precision.split(".")[-1]: | |
| request_file = tmp_request_file | |
| return request_file | |
| def update_model_type(data, requests_path): | |
| open_llm_request_file = get_request_file_for_model(data, requests_path) | |
| try: | |
| with open(open_llm_request_file, "r") as f: | |
| open_llm_request = json.load(f) | |
| data["model_type"] = open_llm_request["model_type"] | |
| return True, data | |
| except: | |
| return False, data | |
| def read_and_write_json_files(directory, requests_path_open_llm): | |
| # Walk through the directory | |
| for subdir, dirs, files in tqdm(os.walk(directory), desc="updating model type according to open llm leaderboard"): | |
| for file in files: | |
| # Check if the file is a JSON file | |
| if file.endswith(".json"): | |
| file_path = os.path.join(subdir, file) | |
| # Open and read the JSON file | |
| with open(file_path, "r") as json_file: | |
| data = json.load(json_file) | |
| sucess, data = update_model_type(data, requests_path_open_llm) | |
| if sucess: | |
| with open(file_path, "w") as json_file: | |
| json.dump(data, json_file) | |
| my_set_eval_request( | |
| api=API, json_filepath=file_path, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND_SYNC | |
| ) | |
| if __name__ == "__main__": | |
| my_snapshot_download( | |
| repo_id=QUEUE_REPO_OPEN_LLM, | |
| revision="main", | |
| local_dir=EVAL_REQUESTS_PATH_OPEN_LLM, | |
| repo_type="dataset", | |
| max_workers=60, | |
| ) | |
| my_snapshot_download( | |
| repo_id=QUEUE_REPO, | |
| revision="main", | |
| local_dir=EVAL_REQUESTS_PATH_BACKEND_SYNC, | |
| repo_type="dataset", | |
| max_workers=60, | |
| ) | |
| read_and_write_json_files(EVAL_REQUESTS_PATH_BACKEND_SYNC, EVAL_REQUESTS_PATH_OPEN_LLM) | |