Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python | |
| from huggingface_hub import snapshot_download | |
| from src.leaderboard.read_evals import get_raw_eval_results | |
| from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, RESULTS_REPO | |
| from src.backend.run_eval_suite import run_evaluation | |
| from src.backend.manage_requests import check_completed_evals, get_eval_requests, set_eval_request | |
| from src.backend.sort_queue import sort_models_by_priority | |
| from src.backend.envs import Tasks, EVAL_REQUESTS_PATH_BACKEND, EVAL_RESULTS_PATH_BACKEND, DEVICE, LIMIT, Task | |
| from src.leaderboard.read_evals import get_raw_eval_results | |
| from src.backend.manage_requests import EvalRequest | |
| from src.leaderboard.read_evals import EvalResult | |
| snapshot_download( | |
| repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30 | |
| ) | |
| snapshot_download( | |
| repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30 | |
| ) | |
| PENDING_STATUS = "PENDING" | |
| RUNNING_STATUS = "RUNNING" | |
| FINISHED_STATUS = "FINISHED" | |
| FAILED_STATUS = "FAILED" | |
| TASKS_HARNESS = [task.value for task in Tasks] | |
| current_finished_status = [FINISHED_STATUS] | |
| def request_to_result_name(request: EvalRequest) -> str: | |
| org_and_model = request.model.split("/", 1) | |
| if len(org_and_model) == 1: | |
| model = org_and_model[0] | |
| res = f"{model}_{request.precision}" | |
| else: | |
| org = org_and_model[0] | |
| model = org_and_model[1] | |
| res = f"{org}_{model}_{request.precision}" | |
| return res | |
| # Get all eval request that are FINISHED, if you want to run other evals, change this parameter | |
| eval_requests: list[EvalRequest] = get_eval_requests( | |
| job_status=current_finished_status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND | |
| ) | |
| # Sort the evals by priority (first submitted first run) | |
| eval_requests: list[EvalRequest] = sort_models_by_priority(api=API, models=eval_requests) | |
| eval_results: list[EvalResult] = get_raw_eval_results(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH) | |
| result_name_to_request = {request_to_result_name(r): r for r in eval_requests} | |
| result_name_to_result = {r.eval_name: r for r in eval_results} | |
| print("Requests", sorted(result_name_to_request.keys())) | |
| print("Results", sorted(result_name_to_result.keys())) | |
| for eval_request in eval_requests: | |
| result_name: str = request_to_result_name(eval_request) | |
| # Check the corresponding result | |
| eval_result: EvalResult = result_name_to_result[result_name] | |
| # Iterate over tasks and, if we do not have results for a task, run the relevant evaluations | |
| for task in TASKS_HARNESS: | |
| task_name = task.benchmark | |
| if task_name not in eval_result.results: | |
| print("RUN THIS ONE!", result_name, task_name) | |
| raw_data = get_raw_eval_results(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH) | |
| all_data_json = [v.to_dict() for v in raw_data if v.is_complete()] | |
| breakpoint() | |