import streamlit as st import sparknlp import os import pandas as pd from sparknlp.base import * from sparknlp.annotator import * from pyspark.ml import Pipeline from sparknlp.pretrained import PretrainedPipeline from streamlit_tags import st_tags # Page configuration st.set_page_config( layout="wide", initial_sidebar_state="auto" ) # CSS for styling st.markdown(""" <style> .main-title { font-size: 36px; color: #4A90E2; font-weight: bold; text-align: center; } .section { background-color: #f9f9f9; padding: 10px; border-radius: 10px; margin-top: 10px; } .section p, .section ul { color: #666666; } </style> """, unsafe_allow_html=True) @st.cache_resource def init_spark(): return sparknlp.start() @st.cache_resource def create_pipeline(model): image_assembler = ImageAssembler()\ .setInputCol("image")\ .setOutputCol("image_assembler") imageClassifier = SwinForImageClassification.pretrained()\ .setInputCols("image_assembler")\ .setOutputCol("class") pipeline = Pipeline(stages=[image_assembler, imageClassifier]) return pipeline def fit_data(pipeline, data): empty_df = spark.createDataFrame([['']]).toDF('text') model = pipeline.fit(empty_df) light_pipeline = LightPipeline(model) annotations_result = light_pipeline.fullAnnotateImage(data) return annotations_result[0]['class'][0].result def save_uploadedfile(uploadedfile): filepath = os.path.join(IMAGE_FILE_PATH, uploadedfile.name) with open(filepath, "wb") as f: if hasattr(uploadedfile, 'getbuffer'): f.write(uploadedfile.getbuffer()) else: f.write(uploadedfile.read()) # Sidebar content model_list = ['image_classifier_swin_base_patch4_window7_224 ', 'image_classifier_swin_base_patch4_window12_384_in22k'] model = st.sidebar.selectbox( "Choose the pretrained model", model_list, help="For more info about the models visit: https://sparknlp.org/models" ) # Set up the page layout st.markdown(f'<div class="main-title">Swin For Image Classification</div>', unsafe_allow_html=True) # st.markdown(f'<div class="section"><p>{sub_title}</p></div>', unsafe_allow_html=True) # Reference notebook link in sidebar link = """ <a href="https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/annotation/image/SwinForImageClassification.ipynb"> <img src="https://colab.research.google.com/assets/colab-badge.svg" style="zoom: 1.3" alt="Open In Colab"/> </a> """ st.sidebar.markdown('Reference notebook:') st.sidebar.markdown(link, unsafe_allow_html=True) # Load examples IMAGE_FILE_PATH = f"inputs" image_files = sorted([file for file in os.listdir(IMAGE_FILE_PATH) if file.split('.')[-1]=='png' or file.split('.')[-1]=='jpg' or file.split('.')[-1]=='JPEG' or file.split('.')[-1]=='jpeg']) img_options = st.selectbox("Select an image", image_files) uploadedfile = st.file_uploader("Try it for yourself!") if uploadedfile: file_details = {"FileName":uploadedfile.name,"FileType":uploadedfile.type} save_uploadedfile(uploadedfile) selected_image = f"{IMAGE_FILE_PATH}/{uploadedfile.name}" elif img_options: selected_image = f"{IMAGE_FILE_PATH}/{img_options}" st.subheader('Classified Image') image_size = st.slider('Image Size', 400, 1000, value=400, step = 100) try: st.image(f"{IMAGE_FILE_PATH}/{selected_image}", width=image_size) except: st.image(selected_image, width=image_size) st.subheader('Classification') spark = init_spark() Pipeline = create_pipeline(model) output = fit_data(Pipeline, selected_image) st.markdown(f'This document has been classified as : **{output}**')