Epik / app /__init__.py
Minh Q. Le
Added sentiment intensity plot
40cd566
from fairseq.models.roberta import RobertaModel
import nltk
import sys
# conditionally load in nltk.punkt
try:
nltk.data.find("tokenizers/punkt")
except LookupError:
nltk.download("punkt")
try:
nltk.data.find("sentiment/vader_lexicon.zip")
except LookupError:
nltk.download("vader_lexicon")
PATH_TO_COSMIC = "./Model/COSMIC"
EXTRACTORS_PATH = PATH_TO_COSMIC + "/feature_extraction"
EPIK_MODEL_DIR = PATH_TO_COSMIC + "/erc_training"
sys.path.append(PATH_TO_COSMIC)
sys.path.append(EXTRACTORS_PATH)
sys.path.append(EPIK_MODEL_DIR)
sys.path.append(".")
from Model.COSMIC.feature_extraction.comet.csk_feature_extract import (
CSKFeatureExtractor,
)
from Model.COSMIC.erc_training.predict_epik import parse_cosmic_args, load_model
roberta = RobertaModel.from_pretrained(
EXTRACTORS_PATH + "/checkpoints/epik/",
checkpoint_file="checkpoint_best.pt",
data_name_or_path="../../epik-bin",
)
roberta.eval()
# decide = 0 for running with gpu, device="cpu" for running with gpu
comet = CSKFeatureExtractor(dir=EXTRACTORS_PATH, device="cpu")
cosmic_args = parse_cosmic_args()
COSMIC_MODEL = load_model(EPIK_MODEL_DIR + "/epik/best_model.pt", cosmic_args)
PATH_TO_DEBERTA = "./Model/DeBERTa"
sys.path.append(PATH_TO_DEBERTA)
from Model.DeBERTa.deberta import load_model, deberta_init
cfg, tokenizer = deberta_init()
deberta_model = load_model(cfg, PATH_TO_DEBERTA)