Spaces:
Sleeping
Sleeping
File size: 8,499 Bytes
a446b0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import os
import pickle
import random
import pandas as pd
SPEAKERA_ROLE_MAP = {"Agent": 0, "Visitor": 1}
LABEL_MAP = {
"Curiosity": 0,
"Obscene": 1,
"Informative": 2,
"Openness": 3,
"Acceptance": 4,
"Interest": 5,
"Greeting": 6,
"Disapproval": 7,
"Denial": 8,
"Anxious": 9,
"Uninterested": 10,
"Remorse": 11,
"Confused": 12,
"Accusatory": 13,
"Annoyed": 14,
}
def process_user_input(input: str):
"""Parse the user input and return a list of row where each row is a list with
format `[<conversation_id>, <speaker>, <message>]`.
Args:
input (str): the input of the user with each line has the format of
`<speaker>:<message>`. Only one message per line.
Returns:
dict: a dictionary containing whether the input was successfully processed and
if so, the processed data of the input.
"""
if input == None or input == "":
return {"success": False, "message": "Input must not be an empty string!"}
data = []
for line in input.split("\n"):
if line == "":
continue
try:
speaker, message = line.split(":", 1)
if speaker != "Agent" and speaker != "Visitor":
return {"success": False, "message": f"Invalid speaker {speaker}"}
# Assuming there's only one input conversation
# Give it a dummy conversation id of epik_0
data.append(["epik_0", speaker, message])
except:
return {"success": False, "message": "Invalid Input"}
return {
"success": True,
"message": "Success",
"data": data,
}
def encode_speaker_role(role):
return SPEAKERA_ROLE_MAP.get(role, 1)
def decode_speaker_role(role_numeric):
for role, numeric_val in SPEAKERA_ROLE_MAP.items():
if role_numeric == numeric_val:
return role
return "Unknow Speaker"
def encode_sentiment_label(label):
return LABEL_MAP.get(label, -1)
def decode_numeric_label(label_numeric):
for label, numeric_val in LABEL_MAP.items():
if label_numeric == numeric_val:
return label
return "Unknow Label"
def preapre_csv(data: list[list], output_path: str, with_label: bool = False):
"""
Process and group the speakers, messages, and labels (if any) by conversation
ids. This function is useful to prepare the neccesary csv file before converting it into
pickle file.
Args:
data (list[list]): A list contains the rows of a dataframe. Each row contains
values representing the coversation id, speaker role, message (, and label if any) in this order.
output_path (str): path to write the csv file.
with_label (bool, optional): Whether the input data contains labels (ie, for
training) or not (ie, for making predictions on a new sample). Defaults to False.
"""
columns = ["ConversationId", "ParticipantRole", "Text"]
if with_label:
columns += ["Label"]
df = pd.DataFrame(data=data, columns=columns)
# encode the participant role
df["ParticipantRoleEncoded"] = df["ParticipantRole"].apply(
lambda role: encode_speaker_role(role)
)
# encode the labels
if with_label:
df["LabelNumeric"] = df["Label"].apply(
lambda label: encode_sentiment_label(label)
)
else:
# Give the new input dummy labels to match the model input shape
df["LabelNumeric"] = df["ParticipantRole"].apply(lambda _: -1)
# group the data into list based on conversation id
agg_params = {"Label": list} if with_label else {}
agg_params.update(
{
"ParticipantRole": list,
"ParticipantRoleEncoded": list,
"Text": list,
"LabelNumeric": list,
}
)
grouped_df = df.groupby("ConversationId").agg(agg_params).reset_index()
grouped_df.to_csv(output_path, index=False, encoding="ascii")
return grouped_df
def convert_to_pickle(
source: str,
dest: str,
index_col: str = None,
list_type_columns: list = [],
order=[],
exclude=[],
single_tuple=False,
):
"""Convert a csv file into a pickle file with format
col1, col2, ..., coln
Args:
source (str): path to csv file
dest (str): the location where the pickle file will be stored
index_col (str): the column with unique ids that serves as index. Default to
None
order (list, optional): specify the order for one or many columns from left to
right, followed by columns not in order.
exclude (list, optional): columns to be excluded from the result. Defaults to
[].
single_tuple (bool): whether or not to output as tuple if there is only one
single column. Default to False.
"""
df = pd.read_csv(source)
df = df.drop(columns=exclude)
# convert column from string representation of a list to list
for col in list_type_columns:
if col in df.columns:
df[col] = df[col].fillna("[]").apply(lambda x: eval(x))
if index_col != None:
df = df.set_index(index_col)
# reorder the columns
if order != []:
left = df[order]
right = df[[col for col in df.columns if col not in order]]
df = pd.concat([left, right], axis=1)
output = ()
for col in df.columns:
output += (df[col].to_dict(),)
if not single_tuple and len(output) == 1:
output = output[0]
with open(dest, "wb") as f:
pickle.dump(output, f)
f.close()
return
def split_and_save_ids(
ids, train_ratio=0.8, test_ratio=0.1, valid_ratio=0.1, dir=".", seed=None
):
"""
Randomly split a list of IDs into training, testing, and validation sets and save them to text files.
Args:
ids (list): List of IDs to be split.
train_ratio (float): Ratio of IDs for the training set (default is 0.8).
test_ratio (float): Ratio of IDs for the testing set (default is 0.1).
valid_ratio (float): Ratio of IDs for the validation set (default is 0.1).
dir (str): the path to the directory to save the files for ids
seed (int): Seed for randomization (default is None).
Returns:
train_set (list): List of IDs in the training set.
test_set (list): List of IDs in the testing set.
valid_set (list): List of IDs in the validation set.
"""
# Check if the ratios add up to 1.0
assert train_ratio + test_ratio + valid_ratio == 1.0, "Ratios should add up to 1.0"
# Set random seed for reproducibility
if seed is not None:
random.seed(seed)
# Shuffle the list of IDs
random.shuffle(ids)
# Calculate the split points
train_split = int(len(ids) * train_ratio)
test_split = train_split + int(len(ids) * test_ratio)
# Split the IDs
train_set = ids[:train_split]
test_set = ids[train_split:test_split]
valid_set = ids[test_split:]
# Save the sets to text files
def save_to_txt(file_path, id_set):
with open(file_path, "w") as file:
id_strings = [str(conv_id) for conv_id in id_set]
file.write("\n".join(id_strings))
save_to_txt(os.path.join(dir, "train_set.txt"), train_set)
save_to_txt(os.path.join(dir, "test_set.txt"), test_set)
save_to_txt(os.path.join(dir, "validation_set.txt"), valid_set)
return train_set, test_set, valid_set
def merge_pkl_with_ids(pickle_src: str, ids_files: list, dir: str = "."):
"""Merge an existing pickle file with id files, resulting in a pickle file with 3
more fields of train_ids, test_ids, and valid_ids.
Args:
pickle_src (str): the path to the pickle file
ids_files (list): list of files that contain ids. Example:
["train_set.txt", "test_set.txt", "validation_set.txt"]. Each file should
contain one single unique id on each line.
dir (str, optional): the directory for ids_files. Defaults to ''.
"""
ids_set = ()
for filename in ids_files:
ids = []
path = os.path.join(dir, filename)
with open(path, "r") as file:
for line in file:
ids.append(line.strip())
ids_set += (ids,)
with open(pickle_src, "rb") as file:
data = pickle.load(file)
data += ids_set
file.close()
with open(pickle_src, "wb") as file:
pickle.dump(data, file)
file.close()
|