Spaces:
Sleeping
Sleeping
File size: 7,411 Bytes
133dc65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import numpy as np
import tensorflow as tf
import tensorflow_addons as tfa
from tensorflow.keras import layers
import transformers
import os
MAX_LENGTH = 512 # the maximum number of messages per input
BATCH_SIZE = 8 # number of messages processed at a time
class MeanPool(tf.keras.layers.Layer):
def call(self, inputs, mask=None):
broadcast_mask = tf.expand_dims(tf.cast(mask, "float32"), -1)
embedding_sum = tf.reduce_sum(inputs * broadcast_mask, axis=1)
mask_sum = tf.reduce_sum(broadcast_mask, axis=1)
mask_sum = tf.math.maximum(mask_sum, tf.constant([1e-9]))
return embedding_sum / mask_sum
class WeightsSumOne(tf.keras.constraints.Constraint):
def __call__(self, w):
return tf.nn.softmax(w, axis=0)
def deberta_init(
pretrained_model_name: str = "microsoft/deberta-v3-large", tokenizer_dir: str = "."
):
"""Helper function to quickly initialize the config and tokenizer for a model
Args:
pretrained_model_name (str, optional): The model name. Defaults to "microsoft/deberta-v3-large".
tokenizer_dir (str, optional): Directory of the tokenizer. Defaults to ".".
Returns:
The configuration and tokenizer of the model.
"""
tokenizer = transformers.AutoTokenizer.from_pretrained(pretrained_model_name)
tokenizer_path = os.path.join(tokenizer_dir, "tokenizer")
tokenizer.save_pretrained(tokenizer_path)
cfg = transformers.AutoConfig.from_pretrained(
pretrained_model_name, output_hidden_states=True
)
cfg.hidden_dropout_prob = 0
cfg.attention_probs_dropout_prob = 0
cfg.save_pretrained(tokenizer_path)
return cfg, tokenizer
def get_model(cfg):
"""Get a DeBERTa model using the specified configuration
Args:
cfg : the configuration of the model (can be generated using deberta_init)
Returns:
The model with respect to the given configuration.
"""
input_ids = tf.keras.layers.Input(
shape=(MAX_LENGTH,), dtype=tf.int32, name="input_ids"
)
attention_masks = tf.keras.layers.Input(
shape=(MAX_LENGTH,), dtype=tf.int32, name="attention_masks"
)
deberta_model = transformers.TFAutoModel.from_pretrained(
"microsoft/deberta-v3-large", config=cfg
)
REINIT_LAYERS = 1
normal_initializer = tf.keras.initializers.GlorotUniform()
zeros_initializer = tf.keras.initializers.Zeros()
ones_initializer = tf.keras.initializers.Ones()
for encoder_block in deberta_model.deberta.encoder.layer[-REINIT_LAYERS:]:
for layer in encoder_block.submodules:
if isinstance(layer, tf.keras.layers.Dense):
layer.kernel.assign(
normal_initializer(
shape=layer.kernel.shape, dtype=layer.kernel.dtype
)
)
if layer.bias is not None:
layer.bias.assign(
zeros_initializer(
shape=layer.bias.shape, dtype=layer.bias.dtype
)
)
elif isinstance(layer, tf.keras.layers.LayerNormalization):
layer.beta.assign(
zeros_initializer(shape=layer.beta.shape, dtype=layer.beta.dtype)
)
layer.gamma.assign(
ones_initializer(shape=layer.gamma.shape, dtype=layer.gamma.dtype)
)
deberta_output = deberta_model.deberta(input_ids, attention_mask=attention_masks)
hidden_states = deberta_output.hidden_states
# WeightedLayerPool + MeanPool of the last 4 hidden states
stack_meanpool = tf.stack(
[MeanPool()(hidden_s, mask=attention_masks) for hidden_s in hidden_states[-4:]],
axis=2,
)
weighted_layer_pool = layers.Dense(
1, use_bias=False, kernel_constraint=WeightsSumOne()
)(stack_meanpool)
weighted_layer_pool = tf.squeeze(weighted_layer_pool, axis=-1)
output = layers.Dense(15, activation="linear")(weighted_layer_pool)
model = tf.keras.Model(inputs=[input_ids, attention_masks], outputs=output)
# Compile model with Layer-wise Learning Rate Decay
layer_list = [deberta_model.deberta.embeddings] + list(
deberta_model.deberta.encoder.layer
)
layer_list.reverse()
INIT_LR = 1e-5
LLRDR = 0.9
LR_SCH_DECAY_STEPS = 1600
lr_schedules = [
tf.keras.optimizers.schedules.ExponentialDecay(
initial_learning_rate=INIT_LR * LLRDR**i,
decay_steps=LR_SCH_DECAY_STEPS,
decay_rate=0.3,
)
for i in range(len(layer_list))
]
lr_schedule_head = tf.keras.optimizers.schedules.ExponentialDecay(
initial_learning_rate=1e-4, decay_steps=LR_SCH_DECAY_STEPS, decay_rate=0.3
)
optimizers = [
tf.keras.optimizers.Adam(learning_rate=lr_sch) for lr_sch in lr_schedules
]
optimizers_and_layers = [
(tf.keras.optimizers.Adam(learning_rate=lr_schedule_head), model.layers[-4:])
] + list(zip(optimizers, layer_list))
optimizer = tfa.optimizers.MultiOptimizer(optimizers_and_layers)
model.compile(
optimizer=optimizer,
loss="mse",
metrics=[tf.keras.metrics.RootMeanSquaredError()],
)
return model
def deberta_encode(texts: str, tokenizer):
"""Helper function to tokenize the text using the specified tokenizer"""
input_ids = []
attention_mask = []
for text in texts:
token = tokenizer(
text,
add_special_tokens=True,
max_length=512,
return_attention_mask=True,
return_tensors="np",
truncation=True,
padding="max_length",
)
input_ids.append(token["input_ids"][0])
attention_mask.append(token["attention_mask"][0])
return np.array(input_ids, dtype="int32"), np.array(attention_mask, dtype="int32")
def predict(model, tokenizer, texts):
"""Predict the labels for each messages in texts
Args:
model: your DeBERTa model
tokenizer: a tokenizer (can be generated by deberta_init)
texts (_type_): _description_
Returns:
_type_: _description_
"""
prediction = model.predict(deberta_encode(texts, tokenizer))
labels = np.argmax(prediction, axis=1)
return labels
def load_model(cfg, model_dir: str = "."):
"""Helper function to load a DeBERTa model with pretrained weights
Args:
cfg: configuration for the model (can be generated with deberta_init)
model_dir (str, optional): the directory of the pretrained weights. Defaults to ".".
Returns:
A DeBERTa model with pretrained weights.
"""
tf.keras.backend.clear_session()
model = get_model(cfg)
model_path = os.path.join(model_dir, "best_model_fold2.h5")
model.load_weights(model_path)
return model
# map the integer labels to their original string representation
DEBERTA_LABEL_MAP = {
0: "Greeting",
1: "Curiosity",
2: "Interest",
3: "Obscene",
4: "Annoyed",
5: "Openness",
6: "Anxious",
7: "Acceptance",
8: "Uninterested",
9: "Informative",
10: "Accusatory",
11: "Denial",
12: "Confused",
13: "Disapproval",
14: "Remorse",
}
def decode_deberta_label(numeric_label):
return DEBERTA_LABEL_MAP.get(numeric_label, "Unknown Label")
|