AAAAAAyq
commited on
Commit
·
7f6d4e3
1
Parent(s):
c2bd1fd
Fix the OOM from the useful suggestion by hysts
Browse files- app.py +8 -2
- app_debug.py +8 -1
- gradio_cached_examples/16/log.csv +2 -0
- gradio_cached_examples/16/output/tmps67a9kx5.png +0 -0
app.py
CHANGED
|
@@ -159,13 +159,19 @@ device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
| 159 |
|
| 160 |
def predict(input, input_size=512, high_visual_quality=True):
|
| 161 |
input_size = int(input_size) # 确保 imgsz 是整数
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
results = model(input, device=device, retina_masks=True, iou=0.7, conf=0.25, imgsz=input_size)
|
| 163 |
fig = fast_process(annotations=results[0].masks.data,
|
| 164 |
image=input, high_quality=high_visual_quality, device=device)
|
| 165 |
return fig
|
| 166 |
|
| 167 |
-
|
| 168 |
-
|
| 169 |
# input_size=1024
|
| 170 |
# high_quality_visual=True
|
| 171 |
# inp = 'assets/sa_192.jpg'
|
|
|
|
| 159 |
|
| 160 |
def predict(input, input_size=512, high_visual_quality=True):
|
| 161 |
input_size = int(input_size) # 确保 imgsz 是整数
|
| 162 |
+
|
| 163 |
+
# Thanks for the suggestion by hysts in HuggingFace.
|
| 164 |
+
w, h = input.size
|
| 165 |
+
scale = input_size / max(w, h)
|
| 166 |
+
new_w = int(w * scale)
|
| 167 |
+
new_h = int(h * scale)
|
| 168 |
+
input = input.resize((new_w, new_h))
|
| 169 |
+
|
| 170 |
results = model(input, device=device, retina_masks=True, iou=0.7, conf=0.25, imgsz=input_size)
|
| 171 |
fig = fast_process(annotations=results[0].masks.data,
|
| 172 |
image=input, high_quality=high_visual_quality, device=device)
|
| 173 |
return fig
|
| 174 |
|
|
|
|
|
|
|
| 175 |
# input_size=1024
|
| 176 |
# high_quality_visual=True
|
| 177 |
# inp = 'assets/sa_192.jpg'
|
app_debug.py
CHANGED
|
@@ -157,7 +157,14 @@ def fast_show_mask_gpu(annotation, ax,
|
|
| 157 |
|
| 158 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 159 |
|
| 160 |
-
def predict(input, input_size=512, high_visual_quality=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
input_size = int(input_size) # 确保 imgsz 是整数
|
| 162 |
results = model(input, device=device, retina_masks=True, iou=0.7, conf=0.25, imgsz=input_size)
|
| 163 |
fig = fast_process(annotations=results[0].masks.data,
|
|
|
|
| 157 |
|
| 158 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 159 |
|
| 160 |
+
def predict(input, input_size=512, high_visual_quality=True):
|
| 161 |
+
# Thanks for the suggestion by hysts in HuggingFace.
|
| 162 |
+
w, h = input.size
|
| 163 |
+
scale = input_size / max(w, h)
|
| 164 |
+
new_w = int(w * scale)
|
| 165 |
+
new_h = int(h * scale)
|
| 166 |
+
input = input.resize((new_w, new_h))
|
| 167 |
+
|
| 168 |
input_size = int(input_size) # 确保 imgsz 是整数
|
| 169 |
results = model(input, device=device, retina_masks=True, iou=0.7, conf=0.25, imgsz=input_size)
|
| 170 |
fig = fast_process(annotations=results[0].masks.data,
|
gradio_cached_examples/16/log.csv
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
output,flag,username,timestamp
|
| 2 |
+
/data1/10cls/duyinglong/sam/ultralytics/ultralytics/yolo/v8/segment/demo/FastSAM/gradio_cached_examples/16/output/tmps67a9kx5.png,,,2023-06-22 16:13:18.129722
|
gradio_cached_examples/16/output/tmps67a9kx5.png
ADDED
|