sourabhbargi11 commited on
Commit
57231ec
·
verified ·
1 Parent(s): 0e82191

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +70 -0
app.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from PIL import Image
3
+ #import torch
4
+ #from transformers import BlipProcessor, BlipForConditionalGeneration
5
+
6
+ def set_page_config():
7
+ st.set_page_config(
8
+ page_title='Caption an Image',
9
+ page_icon=':camera:',
10
+ layout='wide',
11
+ )
12
+
13
+ #def initialize_model():
14
+ # hf_model = "Salesforce/blip-image-captioning-large"
15
+ # device = 'cuda' if torch.cuda.is_available() else 'cpu'
16
+ # processor = BlipProcessor.from_pretrained(hf_model)
17
+ # model = BlipForConditionalGeneration.from_pretrained(hf_model).to(device) # type: ignore
18
+ # return processor, model, device
19
+
20
+ def upload_image():
21
+ return st.sidebar.file_uploader("Upload an image (we aren't storing anything)", type=["jpg", "jpeg", "png"])
22
+
23
+ def resize_image(image, max_width):
24
+ width, height = image.size
25
+ if width > max_width:
26
+ ratio = max_width / width
27
+ height = int(height * ratio)
28
+ image = image.resize((max_width, height))
29
+ return image
30
+
31
+ def generate_caption(processor, model, device, image):
32
+ #inputs = processor(image, return_tensors='pt').to(device)
33
+ #out = model.generate(**inputs, max_new_tokens=20)
34
+ #caption = processor.decode(out[0], skip_special_tokens=True)
35
+ caption="im here "
36
+ return caption
37
+
38
+ def main():
39
+ set_page_config()
40
+ st.header("Caption an Image :camera:")
41
+
42
+ uploaded_image = upload_image()
43
+
44
+ if uploaded_image is not None:
45
+ image = Image.open(uploaded_image)
46
+ image = resize_image(image, max_width=300)
47
+
48
+ st.image(image, caption='Your image')
49
+
50
+ with st.sidebar:
51
+ st.divider()
52
+ if st.sidebar.button('Generate Caption'):
53
+ with st.spinner('Generating caption...'):
54
+ #processor, model, device = initialize_model()
55
+ #caption = generate_caption(processor, model, device, image)
56
+ caption="im here man"
57
+ st.header("Caption:")
58
+ st.markdown(f'**{caption}**')
59
+
60
+
61
+
62
+ if __name__ == '__main__':
63
+ main()
64
+
65
+
66
+ st.markdown("""
67
+ ---
68
+ You are looking at Finetuned image Caption model """)
69
+
70
+