Spaces:
Sleeping
Sleeping
# !pip install torch | |
# import torch | |
import streamlit as st | |
from PIL import Image | |
# from transformers import GPT2TokenizerFast, ViTImageProcessor, VisionEncoderDecoderModel,RobertaTokenizerFast, VisionEncoderDecoderModel | |
#from transformers import BlipProcessor, BlipForConditionalGeneration | |
# Load model directly | |
from transformers import AutoTokenizer, AutoModel | |
# tokenizer = AutoTokenizer.from_pretrained("sourabhbargi11/Caption_generator_model") | |
# model = AutoModel.from_pretrained("sourabhbargi11/Caption_generator_model") | |
def set_page_config(): | |
st.set_page_config( | |
page_title='Caption an Cartoon Image', | |
page_icon=':camera:', | |
layout='wide', | |
) | |
def initialize_model(): | |
device = 'cpu' | |
# load a fine-tuned image captioning model and corresponding tokenizer and image processor | |
model = AutoModel.from_pretrained("sourabhbargi11/Caption_generator_model").to(device) | |
tokenizer = AutoTokenizer.from_pretrained("sourabhbargi11/Caption_generator_model") | |
image_processor = ViTImageProcessor.from_pretrained("sourabhbargi11/Caption_generator_model") | |
return image_processor, model,tokenizer, device | |
def upload_image(): | |
return st.sidebar.file_uploader("Upload an image (we aren't storing anything)", type=["jpg", "jpeg", "png"]) | |
def image_preprocess(image): | |
image = image.resize((224,224)) | |
if image.mode == "L": | |
image = image.convert("RGB") | |
return image | |
def generate_caption(processor, model, device, image): | |
inputs = image_processor (image, return_tensors='pt').to(device) | |
out = model.generate(**inputs, max_new_tokens=20) | |
caption = processor.decode(out[0], skip_special_tokens=True) | |
#caption="im here " | |
return caption | |
def main(): | |
set_page_config() | |
st.header("Caption an Image :camera:") | |
uploaded_image = upload_image() | |
if uploaded_image is not None: | |
image = Image.open(uploaded_image) | |
image = image_preprocess(image) | |
st.image(image, caption='Your image') | |
with st.sidebar: | |
st.divider() | |
if st.sidebar.button('Generate Caption'): | |
with st.spinner('Generating caption...'): | |
image_processor, model,tokenizer, device = initialize_model() | |
caption = generate_caption(image_processor, model, device, image) | |
#caption="im here man" | |
st.header("Caption:") | |
st.markdown(f'**{caption}**') | |
if __name__ == '__main__': | |
main() | |
st.markdown(""" | |
--- | |
You are looking at partial finetuned model , please JUDGE ME!!! """) | |