sourabhbargi11's picture
Update app.py
27a4a72 verified
raw
history blame
3.45 kB
# !pip install torch
# import torch
from transformers import AutoTokenizer, AutoModel ,AutoConfig
import torch
from transformers import ViTImageProcessor, VisionEncoderDecoderModel,RobertaTokenizerFast
import PIL
# Move model to GPU , depnding on device
device2 = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load the model
import streamlit as st
from PIL import Image
# from transformers import GPT2TokenizerFast, ViTImageProcessor, VisionEncoderDecoderModel,RobertaTokenizerFast, VisionEncoderDecoderModel
#from transformers import BlipProcessor, BlipForConditionalGeneration
# Load model directly
from transformers import AutoTokenizer, AutoModel
# tokenizer = AutoTokenizer.from_pretrained("sourabhbargi11/Caption_generator_model")
# model = AutoModel.from_pretrained("sourabhbargi11/Caption_generator_model")
def set_page_config():
st.set_page_config(
page_title='Caption an Cartoon Image',
page_icon=':camera:',
layout='wide',
)
def initialize_model():
device = 'cpu'
config = AutoConfig.from_pretrained("sourabhbargi11/Caption_generator_model")
model = VisionEncoderDecoderModel.from_pretrained("sourabhbargi11/Caption_generator_model", config=config).to(device)
tokenizer = RobertaTokenizerFast.from_pretrained("roberta-base")
image_processor = ViTImageProcessor.from_pretrained("google/vit-base-patch16-224",device=device)
return image_processor, model,tokenizer, device
def upload_image():
return st.sidebar.file_uploader("Upload an image (we aren't storing anything)", type=["jpg", "jpeg", "png"])
def image_preprocess(image):
image = image.resize((224,224))
if image.mode == "L":
image = image.convert("RGB")
return image
def generate_caption(processor, model, device, image):
inputs = image_processor (image, return_tensors='pt').to(device)
model.eval()
# Generate caption
with torch.no_grad():
output = model.generate(
pixel_values=inputs ,
max_length=1000, # Adjust the maximum length of the generated caption as needed
num_beams=4, # Adjust the number of beams for beam search decoding
early_stopping=True # Enable early stopping to stop generation when all beams finished
)
# Decode the generated caption
caption = tokenizer.decode(output[0], skip_special_tokens=True)
return caption
def main():
set_page_config()
st.header("Caption an Image :camera:")
uploaded_image = upload_image()
if uploaded_image is not None:
image = Image.open(uploaded_image)
image = image_preprocess(image)
st.image(image, caption='Your image')
with st.sidebar:
st.divider()
if st.sidebar.button('Generate Caption'):
with st.spinner('Generating caption...'):
image_processor, model,tokenizer, device = initialize_model()
caption = generate_caption(image_processor, model, device, image)
st.header("Caption:")
st.markdown(f'**{caption}**')
if __name__ == '__main__':
main()
# st.markdown("""
# ---
# You are looking at partial tuned model , please JUDGE ME!!! (I am Funny , Sensible , Creative )""")
st.markdown("""
---
You are looking at a partially tuned model. Judge me! (I am Funny and Creative) πŸ˜„πŸŽ¨""")