import streamlit as st from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # Load tokenizer and model model_identifier = "songhieng/khmer-mt5-summarization" tokenizer = AutoTokenizer.from_pretrained(model_identifier, use_fast=False) model = AutoModelForSeq2SeqLM.from_pretrained(model_identifier, use_fast=False) # Set page configuration st.set_page_config(page_title="Khmer Text Summarization", layout="wide") # App title and description st.title("Khmer Text Summarization") st.write("Enter Khmer text below to generate a concise summary.") # Text input user_input = st.text_area("Input Text:", height=300) # Summarization parameters st.sidebar.header("Summarization Settings") max_length = st.sidebar.slider("Maximum Summary Length", min_value=50, max_value=300, value=150, step=10) min_length = st.sidebar.slider("Minimum Summary Length", min_value=10, max_value=100, value=30, step=5) num_beams = st.sidebar.slider("Number of Beams", min_value=1, max_value=10, value=4, step=1) # Summarize button if st.button("Summarize"): if user_input.strip(): try: # Tokenize input inputs = tokenizer.encode(user_input, return_tensors="pt", truncation=True) # Generate summary summary_ids = model.generate( inputs, max_length=max_length, min_length=min_length, num_beams=num_beams, length_penalty=2.0, early_stopping=True ) summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) # Display summary st.subheader("Summary:") st.write(summary) except Exception as e: st.error(f"An error occurred during summarization: {e}") else: st.warning("Please enter some text to summarize.")