|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Finetuning the library models for sequence classification on GLUE.""" |
|
|
|
|
|
import json |
|
import logging |
|
import os |
|
import sys |
|
from dataclasses import dataclass, field |
|
from typing import Optional |
|
|
|
import evaluate |
|
import numpy as np |
|
import tensorflow as tf |
|
from datasets import load_dataset |
|
|
|
import transformers |
|
from transformers import ( |
|
AutoConfig, |
|
AutoTokenizer, |
|
DataCollatorWithPadding, |
|
DefaultDataCollator, |
|
HfArgumentParser, |
|
PretrainedConfig, |
|
PushToHubCallback, |
|
TFAutoModelForSequenceClassification, |
|
TFTrainingArguments, |
|
create_optimizer, |
|
set_seed, |
|
) |
|
from transformers.trainer_utils import get_last_checkpoint, is_main_process |
|
from transformers.utils import check_min_version, send_example_telemetry |
|
|
|
|
|
|
|
check_min_version("4.28.0.dev0") |
|
|
|
task_to_keys = { |
|
"cola": ("sentence", None), |
|
"mnli": ("premise", "hypothesis"), |
|
"mrpc": ("sentence1", "sentence2"), |
|
"qnli": ("question", "sentence"), |
|
"qqp": ("question1", "question2"), |
|
"rte": ("sentence1", "sentence2"), |
|
"sst2": ("sentence", None), |
|
"stsb": ("sentence1", "sentence2"), |
|
"wnli": ("sentence1", "sentence2"), |
|
} |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
|
|
Using `HfArgumentParser` we can turn this class |
|
into argparse arguments to be able to specify them on |
|
the command line. |
|
""" |
|
|
|
task_name: str = field( |
|
metadata={"help": "The name of the task to train on: " + ", ".join(task_to_keys.keys())}, |
|
) |
|
predict_file: str = field( |
|
metadata={"help": "A file containing user-supplied examples to make predictions for"}, |
|
default=None, |
|
) |
|
max_seq_length: int = field( |
|
default=128, |
|
metadata={ |
|
"help": ( |
|
"The maximum total input sequence length after tokenization. Sequences longer " |
|
"than this will be truncated, sequences shorter will be padded." |
|
) |
|
}, |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."} |
|
) |
|
pad_to_max_length: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Whether to pad all samples to `max_seq_length`. " |
|
"If False, will pad the samples dynamically when batching to the maximum length in the batch." |
|
) |
|
}, |
|
) |
|
max_train_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
) |
|
}, |
|
) |
|
max_eval_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of evaluation examples to this " |
|
"value if set." |
|
) |
|
}, |
|
) |
|
max_predict_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of prediction examples to this " |
|
"value if set." |
|
) |
|
}, |
|
) |
|
|
|
def __post_init__(self): |
|
self.task_name = self.task_name.lower() |
|
if self.task_name not in task_to_keys.keys(): |
|
raise ValueError("Unknown task, you should pick one in " + ",".join(task_to_keys.keys())) |
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. |
|
""" |
|
|
|
model_name_or_path: str = field( |
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} |
|
) |
|
config_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} |
|
) |
|
tokenizer_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} |
|
) |
|
cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, |
|
) |
|
use_fast_tokenizer: bool = field( |
|
default=True, |
|
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, |
|
) |
|
model_revision: str = field( |
|
default="main", |
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, |
|
) |
|
use_auth_token: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Will use the token generated when running `huggingface-cli login` (necessary to use this script " |
|
"with private models)." |
|
) |
|
}, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments)) |
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) |
|
else: |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
|
|
|
|
send_example_telemetry("run_glue", model_args, data_args, framework="tensorflow") |
|
|
|
if not (training_args.do_train or training_args.do_eval or training_args.do_predict): |
|
exit("Must specify at least one of --do_train, --do_eval or --do_predict!") |
|
|
|
|
|
|
|
checkpoint = None |
|
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: |
|
checkpoint = get_last_checkpoint(training_args.output_dir) |
|
if checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: |
|
raise ValueError( |
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. " |
|
"Use --overwrite_output_dir to overcome." |
|
) |
|
elif checkpoint is not None and training_args.resume_from_checkpoint is None: |
|
logger.info( |
|
f"Checkpoint detected, resuming training at {checkpoint}. To avoid this behavior, change " |
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." |
|
) |
|
|
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
handlers=[logging.StreamHandler(sys.stdout)], |
|
) |
|
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN) |
|
|
|
|
|
if is_main_process(training_args.local_rank): |
|
transformers.utils.logging.set_verbosity_info() |
|
transformers.utils.logging.enable_default_handler() |
|
transformers.utils.logging.enable_explicit_format() |
|
logger.info(f"Training/evaluation parameters {training_args}") |
|
|
|
|
|
|
|
|
|
set_seed(training_args.seed) |
|
|
|
|
|
|
|
datasets = load_dataset( |
|
"glue", |
|
data_args.task_name, |
|
cache_dir=model_args.cache_dir, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
|
|
|
|
|
|
is_regression = data_args.task_name == "stsb" |
|
if not is_regression: |
|
label_list = datasets["train"].features["label"].names |
|
num_labels = len(label_list) |
|
else: |
|
num_labels = 1 |
|
|
|
if data_args.predict_file is not None: |
|
logger.info("Preparing user-supplied file for predictions...") |
|
|
|
data_files = {"data": data_args.predict_file} |
|
|
|
for key in data_files.keys(): |
|
logger.info(f"Loading a local file for {key}: {data_files[key]}") |
|
|
|
if data_args.predict_file.endswith(".csv"): |
|
|
|
user_dataset = load_dataset("csv", data_files=data_files, cache_dir=model_args.cache_dir) |
|
else: |
|
|
|
user_dataset = load_dataset("json", data_files=data_files, cache_dir=model_args.cache_dir) |
|
needed_keys = task_to_keys[data_args.task_name] |
|
for key in needed_keys: |
|
assert key in user_dataset["data"].features, f"Your supplied predict_file is missing the {key} key!" |
|
datasets["user_data"] = user_dataset["data"] |
|
|
|
|
|
|
|
|
|
|
|
|
|
config = AutoConfig.from_pretrained( |
|
model_args.config_name if model_args.config_name else model_args.model_name_or_path, |
|
num_labels=num_labels, |
|
finetuning_task=data_args.task_name, |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, |
|
cache_dir=model_args.cache_dir, |
|
use_fast=model_args.use_fast_tokenizer, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
|
|
|
|
|
|
sentence1_key, sentence2_key = task_to_keys[data_args.task_name] |
|
|
|
|
|
if data_args.pad_to_max_length: |
|
padding = "max_length" |
|
else: |
|
|
|
padding = False |
|
|
|
|
|
label_to_id = None |
|
if config.label2id != PretrainedConfig(num_labels=num_labels).label2id and not is_regression: |
|
|
|
label_name_to_id = {k.lower(): v for k, v in config.label2id.items()} |
|
if sorted(label_name_to_id.keys()) == sorted(label_list): |
|
label_to_id = {i: int(label_name_to_id[label_list[i]]) for i in range(num_labels)} |
|
else: |
|
logger.warning( |
|
"Your model seems to have been trained with labels, but they don't match the dataset: ", |
|
f"model labels: {sorted(label_name_to_id.keys())}, dataset labels: {sorted(label_list)}." |
|
"\nIgnoring the model labels as a result.", |
|
) |
|
label_to_id = {label: i for i, label in enumerate(label_list)} |
|
if label_to_id is not None: |
|
config.label2id = label_to_id |
|
config.id2label = {id: label for label, id in config.label2id.items()} |
|
elif data_args.task_name is not None and not is_regression: |
|
config.label2id = {l: i for i, l in enumerate(label_list)} |
|
config.id2label = {id: label for label, id in config.label2id.items()} |
|
|
|
if data_args.max_seq_length > tokenizer.model_max_length: |
|
logger.warning( |
|
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" |
|
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." |
|
) |
|
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) |
|
|
|
def preprocess_function(examples): |
|
|
|
args = ( |
|
(examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key]) |
|
) |
|
result = tokenizer(*args, padding=padding, max_length=max_seq_length, truncation=True) |
|
|
|
return result |
|
|
|
datasets = datasets.map(preprocess_function, batched=True, load_from_cache_file=not data_args.overwrite_cache) |
|
|
|
if data_args.pad_to_max_length: |
|
data_collator = DefaultDataCollator(return_tensors="np") |
|
else: |
|
data_collator = DataCollatorWithPadding(tokenizer, return_tensors="np") |
|
|
|
|
|
|
|
metric = evaluate.load("glue", data_args.task_name) |
|
|
|
def compute_metrics(preds, label_ids): |
|
preds = preds["logits"] |
|
preds = np.squeeze(preds) if is_regression else np.argmax(preds, axis=1) |
|
result = metric.compute(predictions=preds, references=label_ids) |
|
if len(result) > 1: |
|
result["combined_score"] = np.mean(list(result.values())).item() |
|
return result |
|
|
|
|
|
|
|
with training_args.strategy.scope(): |
|
|
|
if checkpoint is None: |
|
model_path = model_args.model_name_or_path |
|
else: |
|
model_path = checkpoint |
|
model = TFAutoModelForSequenceClassification.from_pretrained( |
|
model_path, |
|
config=config, |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
|
|
|
|
|
|
dataset_options = tf.data.Options() |
|
dataset_options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF |
|
num_replicas = training_args.strategy.num_replicas_in_sync |
|
|
|
tf_data = {} |
|
max_samples = { |
|
"train": data_args.max_train_samples, |
|
"validation": data_args.max_eval_samples, |
|
"validation_matched": data_args.max_eval_samples, |
|
"validation_mismatched": data_args.max_eval_samples, |
|
"test": data_args.max_predict_samples, |
|
"test_matched": data_args.max_predict_samples, |
|
"test_mismatched": data_args.max_predict_samples, |
|
"user_data": None, |
|
} |
|
for key in datasets.keys(): |
|
if key == "train" or key.startswith("validation"): |
|
assert "label" in datasets[key].features, f"Missing labels from {key} data!" |
|
if key == "train": |
|
shuffle = True |
|
batch_size = training_args.per_device_train_batch_size * num_replicas |
|
else: |
|
shuffle = False |
|
batch_size = training_args.per_device_eval_batch_size * num_replicas |
|
samples_limit = max_samples[key] |
|
dataset = datasets[key] |
|
if samples_limit is not None: |
|
dataset = dataset.select(range(samples_limit)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data = model.prepare_tf_dataset( |
|
dataset, |
|
shuffle=shuffle, |
|
batch_size=batch_size, |
|
collate_fn=data_collator, |
|
tokenizer=tokenizer, |
|
) |
|
data = data.with_options(dataset_options) |
|
tf_data[key] = data |
|
|
|
|
|
|
|
if training_args.do_train: |
|
num_train_steps = len(tf_data["train"]) * training_args.num_train_epochs |
|
if training_args.warmup_steps > 0: |
|
num_warmup_steps = training_args.warmup_steps |
|
elif training_args.warmup_ratio > 0: |
|
num_warmup_steps = int(num_train_steps * training_args.warmup_ratio) |
|
else: |
|
num_warmup_steps = 0 |
|
|
|
optimizer, schedule = create_optimizer( |
|
init_lr=training_args.learning_rate, |
|
num_train_steps=num_train_steps, |
|
num_warmup_steps=num_warmup_steps, |
|
adam_beta1=training_args.adam_beta1, |
|
adam_beta2=training_args.adam_beta2, |
|
adam_epsilon=training_args.adam_epsilon, |
|
weight_decay_rate=training_args.weight_decay, |
|
adam_global_clipnorm=training_args.max_grad_norm, |
|
) |
|
else: |
|
optimizer = "adam" |
|
if is_regression: |
|
metrics = [] |
|
else: |
|
metrics = ["accuracy"] |
|
model.compile(optimizer=optimizer, metrics=metrics, jit_compile=training_args.xla) |
|
|
|
|
|
|
|
push_to_hub_model_id = training_args.push_to_hub_model_id |
|
model_name = model_args.model_name_or_path.split("/")[-1] |
|
if not push_to_hub_model_id: |
|
push_to_hub_model_id = f"{model_name}-finetuned-glue" |
|
|
|
model_card_kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"} |
|
model_card_kwargs["task_name"] = data_args.task_name |
|
|
|
if training_args.push_to_hub: |
|
callbacks = [ |
|
PushToHubCallback( |
|
output_dir=training_args.output_dir, |
|
hub_model_id=push_to_hub_model_id, |
|
hub_token=training_args.push_to_hub_token, |
|
tokenizer=tokenizer, |
|
**model_card_kwargs, |
|
) |
|
] |
|
else: |
|
callbacks = [] |
|
|
|
|
|
|
|
if training_args.do_train: |
|
if training_args.do_eval and not data_args.task_name == "mnli": |
|
|
|
|
|
validation_data = tf_data["validation"] |
|
else: |
|
validation_data = None |
|
model.fit( |
|
tf_data["train"], |
|
validation_data=validation_data, |
|
epochs=int(training_args.num_train_epochs), |
|
callbacks=callbacks, |
|
) |
|
|
|
|
|
|
|
if training_args.do_eval: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
logger.info("*** Evaluate ***") |
|
|
|
|
|
if data_args.task_name == "mnli": |
|
tasks = ["mnli", "mnli-mm"] |
|
tf_datasets = [tf_data["validation_matched"], tf_data["validation_mismatched"]] |
|
raw_datasets = [datasets["validation_matched"], datasets["validation_mismatched"]] |
|
else: |
|
tasks = [data_args.task_name] |
|
tf_datasets = [tf_data["validation"]] |
|
raw_datasets = [datasets["validation"]] |
|
|
|
for raw_dataset, tf_dataset, task in zip(raw_datasets, tf_datasets, tasks): |
|
eval_predictions = model.predict(tf_dataset) |
|
eval_metrics = compute_metrics(eval_predictions, raw_dataset["label"]) |
|
print(f"Evaluation metrics ({task}):") |
|
print(eval_metrics) |
|
if training_args.output_dir is not None: |
|
output_eval_file = os.path.join(training_args.output_dir, "all_results.json") |
|
with open(output_eval_file, "w") as writer: |
|
writer.write(json.dumps(eval_metrics)) |
|
|
|
|
|
|
|
|
|
if training_args.do_predict or data_args.predict_file: |
|
logger.info("*** Predict ***") |
|
|
|
|
|
tasks = [] |
|
tf_datasets = [] |
|
raw_datasets = [] |
|
if training_args.do_predict: |
|
if data_args.task_name == "mnli": |
|
tasks.extend(["mnli", "mnli-mm"]) |
|
tf_datasets.extend([tf_data["test_matched"], tf_data["test_mismatched"]]) |
|
raw_datasets.extend([datasets["test_matched"], datasets["test_mismatched"]]) |
|
else: |
|
tasks.append(data_args.task_name) |
|
tf_datasets.append(tf_data["test"]) |
|
raw_datasets.append(datasets["test"]) |
|
if data_args.predict_file: |
|
tasks.append("user_data") |
|
tf_datasets.append(tf_data["user_data"]) |
|
raw_datasets.append(datasets["user_data"]) |
|
|
|
for raw_dataset, tf_dataset, task in zip(raw_datasets, tf_datasets, tasks): |
|
test_predictions = model.predict(tf_dataset) |
|
if "label" in raw_dataset: |
|
test_metrics = compute_metrics(test_predictions, raw_dataset["label"]) |
|
print(f"Test metrics ({task}):") |
|
print(test_metrics) |
|
|
|
if is_regression: |
|
predictions_to_write = np.squeeze(test_predictions["logits"]) |
|
else: |
|
predictions_to_write = np.argmax(test_predictions["logits"], axis=1) |
|
|
|
output_predict_file = os.path.join(training_args.output_dir, f"predict_results_{task}.txt") |
|
with open(output_predict_file, "w") as writer: |
|
logger.info(f"***** Writing prediction results for {task} *****") |
|
writer.write("index\tprediction\n") |
|
for index, item in enumerate(predictions_to_write): |
|
if is_regression: |
|
writer.write(f"{index}\t{item:3.3f}\n") |
|
else: |
|
item = model.config.id2label[item] |
|
writer.write(f"{index}\t{item}\n") |
|
|
|
|
|
if training_args.output_dir is not None and not training_args.push_to_hub: |
|
|
|
model.save_pretrained(training_args.output_dir) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|