|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Training a CLIP like dual encoder models using text and vision encoders in the library. |
|
|
|
The script can be used to train CLIP like models for languages other than English by using |
|
a text encoder pre-trained in the desired language. Currently this script supports the following vision |
|
and text models: |
|
Vision models: ViT(https://huggingface.co/models?filter=vit), CLIP (https://huggingface.co/models?filter=clip) |
|
Text models: BERT, ROBERTa (https://huggingface.co/models?filter=fill-mask) |
|
""" |
|
|
|
import logging |
|
import os |
|
import sys |
|
from dataclasses import dataclass, field |
|
from typing import Optional |
|
|
|
import tensorflow as tf |
|
from datasets import load_dataset |
|
from PIL import Image |
|
|
|
import transformers |
|
from transformers import ( |
|
AutoImageProcessor, |
|
AutoTokenizer, |
|
HfArgumentParser, |
|
PushToHubCallback, |
|
TFAutoModel, |
|
TFTrainingArguments, |
|
TFVisionTextDualEncoderModel, |
|
create_optimizer, |
|
) |
|
from transformers.utils import check_min_version, send_example_telemetry |
|
from transformers.utils.versions import require_version |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
check_min_version("4.28.0.dev0") |
|
|
|
require_version( |
|
"datasets>=1.8.0", "To fix: pip install -r examples/tensorflow/contrastive-image-text/requirements.txt" |
|
) |
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. |
|
""" |
|
|
|
model_name_or_path: str = field( |
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}, default=None |
|
) |
|
vision_model_name_or_path: str = field( |
|
metadata={"help": "Path to pretrained image model or model identifier from huggingface.co/models"}, |
|
default=None, |
|
) |
|
text_model_name_or_path: str = field( |
|
metadata={"help": "Path to pretrained text model or model identifier from huggingface.co/models"}, default=None |
|
) |
|
config_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} |
|
) |
|
tokenizer_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} |
|
) |
|
image_processor_name: str = field(default=None, metadata={"help": "Name or path of preprocessor config."}) |
|
cache_dir: Optional[str] = field( |
|
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} |
|
) |
|
model_revision: str = field( |
|
default="main", |
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, |
|
) |
|
use_fast_tokenizer: bool = field( |
|
default=True, |
|
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, |
|
) |
|
use_auth_token: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Will use the token generated when running `huggingface-cli login` (necessary to use this script " |
|
"with private models)." |
|
) |
|
}, |
|
) |
|
freeze_vision_model: bool = field( |
|
default=False, metadata={"help": "Whether to freeze the vision model parameters or not."} |
|
) |
|
freeze_text_model: bool = field( |
|
default=False, metadata={"help": "Whether to freeze the text model parameters or not."} |
|
) |
|
|
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
""" |
|
|
|
dataset_name: Optional[str] = field( |
|
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} |
|
) |
|
dataset_config_name: Optional[str] = field( |
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} |
|
) |
|
data_dir: Optional[str] = field(default=None, metadata={"help": "The data directory containing input files."}) |
|
image_column: Optional[str] = field( |
|
default="image_path", |
|
metadata={"help": "The name of the column in the datasets containing the full image file paths."}, |
|
) |
|
caption_column: Optional[str] = field( |
|
default="caption", |
|
metadata={"help": "The name of the column in the datasets containing the image captions."}, |
|
) |
|
train_file: Optional[str] = field( |
|
default=None, metadata={"help": "The input training data file (a jsonlines file)."} |
|
) |
|
validation_file: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "An optional input evaluation data file (a jsonlines file)."}, |
|
) |
|
test_file: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "An optional input testing data file (a jsonlines file)."}, |
|
) |
|
max_seq_length: Optional[int] = field( |
|
default=128, |
|
metadata={ |
|
"help": ( |
|
"The maximum total input sequence length after tokenization. Sequences longer " |
|
"than this will be truncated, sequences shorter will be padded." |
|
) |
|
}, |
|
) |
|
max_train_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
) |
|
}, |
|
) |
|
max_eval_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of evaluation examples to this " |
|
"value if set." |
|
) |
|
}, |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} |
|
) |
|
preprocessing_num_workers: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "The number of processes to use for the preprocessing."}, |
|
) |
|
|
|
def __post_init__(self): |
|
if self.dataset_name is None and self.train_file is None and self.validation_file is None: |
|
raise ValueError("Need either a dataset name or a training/validation file.") |
|
else: |
|
if self.train_file is not None: |
|
extension = self.train_file.split(".")[-1] |
|
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." |
|
if self.validation_file is not None: |
|
extension = self.validation_file.split(".")[-1] |
|
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." |
|
if self.validation_file is not None: |
|
extension = self.validation_file.split(".")[-1] |
|
assert extension == "json", "`validation_file` should be a json file." |
|
|
|
|
|
dataset_name_mapping = { |
|
"image_caption_dataset.py": ("image_path", "caption"), |
|
} |
|
|
|
|
|
def crop_to_square(image): |
|
height, width = tf.shape(image)[0], tf.shape(image)[1] |
|
if height > width: |
|
image = tf.image.crop_to_bounding_box(image, (height - width) // 2, 0, width, width) |
|
elif width > height: |
|
image = tf.image.crop_to_bounding_box(image, 0, (width - height) // 2, height, height) |
|
return image |
|
|
|
|
|
def load_as_tf_dataset(dataset, image_column, image_size, mean, std, batch_size, shuffle): |
|
dataset = dataset.with_format("tensorflow")[:] |
|
tf_dataset = tf.data.Dataset.from_tensor_slices(dataset) |
|
|
|
def load_image(sample): |
|
image_path = sample[image_column] |
|
image = tf.io.read_file(image_path) |
|
image = tf.image.decode_image(image, channels=3, expand_animations=False) |
|
image = crop_to_square(image) |
|
image = tf.image.resize(image, [image_size, image_size], method="bicubic", antialias=True) |
|
image = image / 255.0 |
|
image = (image - mean) / std |
|
image = tf.transpose(image, perm=[2, 0, 1]) |
|
sample["pixel_values"] = image |
|
del sample[image_column] |
|
return sample |
|
|
|
if shuffle: |
|
tf_dataset = tf_dataset.shuffle(len(tf_dataset)) |
|
tf_dataset = tf_dataset.map(load_image, num_parallel_calls=tf.data.experimental.AUTOTUNE) |
|
tf_dataset = tf_dataset.batch(batch_size, drop_remainder=shuffle) |
|
tf_dataset = tf_dataset.prefetch(tf.data.experimental.AUTOTUNE) |
|
|
|
return tf_dataset |
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments)) |
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) |
|
else: |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
if model_args.model_name_or_path is not None: |
|
if model_args.vision_model_name_or_path is not None or model_args.text_model_name_or_path is not None: |
|
raise ValueError( |
|
"If using model_name_or_path, you cannot specify separate image/text model paths as well!" |
|
) |
|
|
|
if model_args.vision_model_name_or_path is not None or model_args.text_model_name_or_path is not None: |
|
if model_args.model_name_or_path is not None: |
|
raise ValueError( |
|
"If using separate image/text model paths, you cannot specify model_name_or_path as well!" |
|
) |
|
if not (model_args.vision_model_name_or_path is not None and model_args.text_model_name_or_path is not None): |
|
raise ValueError( |
|
"If using separate image/text model paths, you must specify both vision_model_name_or_path " |
|
"and text_model_name_or_path!" |
|
) |
|
|
|
|
|
|
|
send_example_telemetry("run_clip", model_args, data_args, framework="tensorflow") |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
handlers=[logging.StreamHandler(sys.stdout)], |
|
) |
|
|
|
|
|
transformers.utils.logging.set_verbosity_info() |
|
|
|
log_level = training_args.get_process_log_level() |
|
logger.setLevel(log_level) |
|
transformers.utils.logging.set_verbosity(log_level) |
|
transformers.utils.logging.enable_default_handler() |
|
transformers.utils.logging.enable_explicit_format() |
|
|
|
|
|
logger.info(f"Training/evaluation parameters {training_args}") |
|
|
|
|
|
last_checkpoint = None |
|
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: |
|
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: |
|
raise ValueError( |
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. " |
|
"Use --overwrite_output_dir to overcome." |
|
) |
|
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: |
|
logger.info( |
|
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " |
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if data_args.dataset_name is not None: |
|
|
|
dataset = load_dataset( |
|
data_args.dataset_name, |
|
data_args.dataset_config_name, |
|
cache_dir=model_args.cache_dir, |
|
keep_in_memory=False, |
|
data_dir=data_args.data_dir, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
else: |
|
data_files = {} |
|
if data_args.train_file is not None: |
|
data_files["train"] = data_args.train_file |
|
extension = data_args.train_file.split(".")[-1] |
|
if data_args.validation_file is not None: |
|
data_files["validation"] = data_args.validation_file |
|
extension = data_args.validation_file.split(".")[-1] |
|
if data_args.test_file is not None: |
|
data_files["test"] = data_args.test_file |
|
extension = data_args.test_file.split(".")[-1] |
|
dataset = load_dataset( |
|
extension, |
|
data_files=data_files, |
|
cache_dir=model_args.cache_dir, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
|
|
|
|
|
|
|
|
if model_args.tokenizer_name: |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer |
|
) |
|
elif model_args.model_name_or_path: |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer |
|
) |
|
elif model_args.text_model_name_or_path: |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_args.text_model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer |
|
) |
|
else: |
|
raise ValueError( |
|
"You are instantiating a new tokenizer from scratch. This is not supported by this script." |
|
"You can do it from another script, save it, and load it from here, using --tokenizer_name." |
|
) |
|
|
|
if model_args.model_name_or_path: |
|
|
|
image_processor = AutoImageProcessor.from_pretrained( |
|
model_args.image_processor_name or model_args.model_name_or_path, |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
with training_args.strategy.scope(): |
|
model = TFAutoModel.from_pretrained( |
|
model_args.model_name_or_path, |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
else: |
|
|
|
image_processor = AutoImageProcessor.from_pretrained( |
|
model_args.image_processor_name or model_args.vision_model_name_or_path, |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
with training_args.strategy.scope(): |
|
model = TFVisionTextDualEncoderModel.from_vision_text_pretrained( |
|
vision_model_name_or_path=model_args.vision_model_name_or_path, |
|
text_model_name_or_path=model_args.text_model_name_or_path, |
|
cache_dir=model_args.cache_dir, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
config = model.config |
|
|
|
if model_args.freeze_vision_model: |
|
model.vision_model.trainable = False |
|
|
|
if model_args.freeze_text_model: |
|
model.text_model.trainable = False |
|
|
|
|
|
|
|
if training_args.do_train: |
|
column_names = dataset["train"].column_names |
|
elif training_args.do_eval: |
|
column_names = dataset["validation"].column_names |
|
elif training_args.do_predict: |
|
column_names = dataset["test"].column_names |
|
else: |
|
logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.") |
|
return |
|
|
|
|
|
dataset_columns = dataset_name_mapping.get(data_args.dataset_name, None) |
|
if data_args.image_column is None: |
|
image_column = dataset_columns[0] if dataset_columns is not None else column_names[0] |
|
else: |
|
image_column = data_args.image_column |
|
if image_column not in column_names: |
|
raise ValueError( |
|
f"--image_column' value '{data_args.image_column}' needs to be one of: {', '.join(column_names)}" |
|
) |
|
if data_args.caption_column is None: |
|
caption_column = dataset_columns[1] if dataset_columns is not None else column_names[1] |
|
else: |
|
caption_column = data_args.caption_column |
|
if caption_column not in column_names: |
|
raise ValueError( |
|
f"--caption_column' value '{data_args.caption_column}' needs to be one of: {', '.join(column_names)}" |
|
) |
|
|
|
|
|
|
|
|
|
def tokenize_captions(examples): |
|
captions = list(examples[caption_column]) |
|
text_inputs = tokenizer(captions, max_length=data_args.max_seq_length, padding="max_length", truncation=True) |
|
examples["input_ids"] = text_inputs.input_ids |
|
examples["attention_mask"] = text_inputs.attention_mask |
|
return examples |
|
|
|
def filter_corrupt_images(examples): |
|
"""remove problematic images""" |
|
valid_images = [] |
|
for image_file in examples[image_column]: |
|
try: |
|
Image.open(image_file) |
|
valid_images.append(True) |
|
except Exception: |
|
valid_images.append(False) |
|
return valid_images |
|
|
|
if training_args.do_train: |
|
if "train" not in dataset: |
|
raise ValueError("--do_train requires a train dataset") |
|
train_dataset = dataset["train"] |
|
if data_args.max_train_samples is not None: |
|
max_train_samples = min(len(train_dataset), data_args.max_train_samples) |
|
train_dataset = train_dataset.select(range(max_train_samples)) |
|
|
|
train_dataset = train_dataset.filter( |
|
filter_corrupt_images, batched=True, num_proc=data_args.preprocessing_num_workers |
|
) |
|
train_dataset = train_dataset.map( |
|
function=tokenize_captions, |
|
batched=True, |
|
remove_columns=[col for col in column_names if col != image_column], |
|
num_proc=data_args.preprocessing_num_workers, |
|
load_from_cache_file=not data_args.overwrite_cache, |
|
desc="Running tokenizer on train dataset", |
|
) |
|
|
|
tf_train_dataset = load_as_tf_dataset( |
|
dataset=train_dataset, |
|
batch_size=training_args.per_device_train_batch_size, |
|
image_column=image_column, |
|
image_size=config.vision_config.image_size, |
|
mean=image_processor.image_mean, |
|
std=image_processor.image_std, |
|
shuffle=True, |
|
) |
|
|
|
if training_args.do_eval: |
|
if "validation" not in dataset: |
|
raise ValueError("--do_eval requires a train validation") |
|
eval_dataset = dataset["validation"] |
|
if data_args.max_eval_samples is not None: |
|
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) |
|
eval_dataset = eval_dataset.select(range(max_eval_samples)) |
|
|
|
eval_dataset = eval_dataset.filter( |
|
filter_corrupt_images, batched=True, num_proc=data_args.preprocessing_num_workers |
|
) |
|
eval_dataset = eval_dataset.map( |
|
function=tokenize_captions, |
|
batched=True, |
|
num_proc=data_args.preprocessing_num_workers, |
|
remove_columns=[col for col in column_names if col != image_column], |
|
load_from_cache_file=not data_args.overwrite_cache, |
|
desc="Running tokenizer on validation dataset", |
|
) |
|
|
|
tf_eval_dataset = load_as_tf_dataset( |
|
dataset=eval_dataset, |
|
batch_size=training_args.per_device_eval_batch_size, |
|
image_column=image_column, |
|
image_size=config.vision_config.image_size, |
|
mean=image_processor.image_mean, |
|
std=image_processor.image_std, |
|
shuffle=False, |
|
) |
|
|
|
|
|
push_to_hub_model_id = training_args.push_to_hub_model_id |
|
if model_args.model_name_or_path is not None: |
|
model_name = model_args.model_name_or_path.split("/")[-1] |
|
else: |
|
vision_name = model_args.vision_model_name_or_path.split("/")[-1] |
|
text_name = model_args.text_model_name_or_path.split("/")[-1] |
|
model_name = f"{vision_name}-{text_name}" |
|
if not push_to_hub_model_id: |
|
if data_args.dataset_name is not None: |
|
push_to_hub_model_id = f"{model_name}-finetuned-{data_args.dataset_name}" |
|
else: |
|
push_to_hub_model_id = f"{model_name}-finetuned-contrastive-image-text-modeling" |
|
|
|
model_card_kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "contrastive-image-text-modeling"} |
|
if data_args.dataset_name is not None: |
|
model_card_kwargs["dataset_tags"] = data_args.dataset_name |
|
if data_args.dataset_config_name is not None: |
|
model_card_kwargs["dataset_args"] = data_args.dataset_config_name |
|
model_card_kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}" |
|
else: |
|
model_card_kwargs["dataset"] = data_args.dataset_name |
|
|
|
if training_args.push_to_hub: |
|
callbacks = [ |
|
PushToHubCallback( |
|
output_dir=training_args.output_dir, |
|
hub_model_id=push_to_hub_model_id, |
|
hub_token=training_args.push_to_hub_token, |
|
tokenizer=tokenizer, |
|
**model_card_kwargs, |
|
) |
|
] |
|
else: |
|
callbacks = [] |
|
|
|
|
|
if training_args.do_train: |
|
num_train_steps = int(len(tf_train_dataset) * int(training_args.num_train_epochs)) |
|
if training_args.warmup_steps > 0: |
|
num_warmup_steps = training_args.warmup_steps |
|
elif training_args.warmup_ratio > 0: |
|
num_warmup_steps = int(num_train_steps * training_args.warmup_ratio) |
|
else: |
|
num_warmup_steps = 0 |
|
optimizer, lr_schedule = create_optimizer( |
|
init_lr=training_args.learning_rate, |
|
num_train_steps=num_train_steps, |
|
num_warmup_steps=num_warmup_steps, |
|
adam_beta1=training_args.adam_beta1, |
|
adam_beta2=training_args.adam_beta2, |
|
adam_epsilon=training_args.adam_epsilon, |
|
weight_decay_rate=training_args.weight_decay, |
|
adam_global_clipnorm=training_args.max_grad_norm, |
|
) |
|
model.compile(optimizer=optimizer, jit_compile=training_args.xla) |
|
|
|
if not training_args.do_eval: |
|
tf_eval_dataset = None |
|
model.fit( |
|
tf_train_dataset, |
|
validation_data=tf_eval_dataset, |
|
epochs=int(training_args.num_train_epochs), |
|
callbacks=callbacks, |
|
) |
|
|
|
|
|
|
|
if training_args.do_eval and not training_args.do_train: |
|
model.evaluate(tf_eval_dataset) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|